Your browser doesn't support javascript.
loading
Optimal sequential Bayesian analysis for degradation tests.
Rodríguez-Narciso, Silvia; Christen, J Andrés.
Afiliação
  • Rodríguez-Narciso S; Universidad Autónoma de Aguascalientes, Aguascalientes, Aguascalientes, Mexico.
  • Christen JA; Centro de Investigación en Matemáticas, Guanajuato, Mexico. jac@cimat.mx.
Lifetime Data Anal ; 22(3): 405-28, 2016 07.
Article em En | MEDLINE | ID: mdl-26307336
Degradation tests are especially difficult to conduct for items with high reliability. Test costs, caused mainly by prolonged item duration and item destruction costs, establish the necessity of sequential degradation test designs. We propose a methodology that sequentially selects the optimal observation times to measure the degradation, using a convenient rule that maximizes the inference precision and minimizes test costs. In particular our objective is to estimate a quantile of the time to failure distribution, where the degradation process is modelled as a linear model using Bayesian inference. The proposed sequential analysis is based on an index that measures the expected discrepancy between the estimated quantile and its corresponding prediction, using Monte Carlo methods. The procedure was successfully implemented for simulated and real data.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Modelos Lineares / Método de Monte Carlo / Teorema de Bayes Tipo de estudo: Health_economic_evaluation / Prognostic_studies Limite: Humans Idioma: En Revista: Lifetime Data Anal Ano de publicação: 2016 Tipo de documento: Article País de afiliação: México País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Modelos Lineares / Método de Monte Carlo / Teorema de Bayes Tipo de estudo: Health_economic_evaluation / Prognostic_studies Limite: Humans Idioma: En Revista: Lifetime Data Anal Ano de publicação: 2016 Tipo de documento: Article País de afiliação: México País de publicação: Estados Unidos