Your browser doesn't support javascript.
loading
Effect of needle insertion speed on tissue injury, stress, and backflow distribution for convection-enhanced delivery in the rat brain.
Casanova, Fernando; Carney, Paul R; Sarntinoranont, Malisa.
Afiliação
  • Casanova F; Department of Mechanical & Aerospace Engineering, University of Florida, Gainesville, Florida, United States of America; Escuela de Ingeniería Mecánica, Universidad del Valle, Cali, Colombia.
  • Carney PR; Department of Pediatrics, Neurology, Neuroscience, and J. Crayton Pruitt Family Department of Biomedical Engineering, Wilder Center of Excellence for Epilepsy Research, Gainesville, Florida, United States of America.
  • Sarntinoranont M; Department of Mechanical & Aerospace Engineering, University of Florida, Gainesville, Florida, United States of America.
PLoS One ; 9(4): e94919, 2014.
Article em En | MEDLINE | ID: mdl-24776986
Flow back along a needle track (backflow) can be a problem during direct infusion, e.g. convection-enhanced delivery (CED), of drugs into soft tissues such as brain. In this study, the effect of needle insertion speed on local tissue injury and backflow was evaluated in vivo in the rat brain. Needles were introduced at three insertion speeds (0.2, 2, and 10 mm/s) followed by CED of Evans blue albumin (EBA) tracer. Holes left in tissue slices were used to reconstruct penetration damage. These measurements were also input into a hyperelastic model to estimate radial stress at the needle-tissue interface (pre-stress) before infusion. Fast insertion speeds were found to produce more tissue bleeding and disruption; average hole area at 10 mm/s was 1.87-fold the area at 0.2 mm/s. Hole measurements also differed at two fixation time points after needle retraction, 10 and 25 min, indicating that pre-stresses are influenced by time-dependent tissue swelling. Calculated pre-stresses were compressive (0 to 485 Pa) and varied along the length of the needle with smaller average values within white matter (116 Pa) than gray matter (301 Pa) regions. Average pre-stress at 0.2 mm/s (351.7 Pa) was calculated to be 1.46-fold the value at 10 mm/s. For CED backflow experiments (0.5, 1, and 2 µL/min), measured EBA backflow increased as much as 2.46-fold between 10 and 0.2 mm/s insertion speeds. Thus, insertion rate-dependent damage and changes in pre-stress were found to directly contribute to the extent of backflow, with slower insertion resulting in less damage and improved targeting.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Estresse Mecânico / Encéfalo / Sistemas de Liberação de Medicamentos / Convecção / Agulhas Limite: Animals Idioma: En Revista: PLoS One Assunto da revista: CIENCIA / MEDICINA Ano de publicação: 2014 Tipo de documento: Article País de afiliação: Colômbia País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Estresse Mecânico / Encéfalo / Sistemas de Liberação de Medicamentos / Convecção / Agulhas Limite: Animals Idioma: En Revista: PLoS One Assunto da revista: CIENCIA / MEDICINA Ano de publicação: 2014 Tipo de documento: Article País de afiliação: Colômbia País de publicação: Estados Unidos