Your browser doesn't support javascript.
loading
Glaucoma Diagnostic Accuracy of Machine Learning Classifiers Using Retinal Nerve Fiber Layer and Optic Nerve Data from SD-OCT.
Barella, Kleyton Arlindo; Costa, Vital Paulino; Gonçalves Vidotti, Vanessa; Silva, Fabrício Reis; Dias, Marcelo; Gomi, Edson Satoshi.
Afiliação
  • Barella KA; Faculty of Medical Sciences, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil.
  • Costa VP; Faculty of Medical Sciences, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil.
  • Gonçalves Vidotti V; Faculty of Medical Sciences, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil.
  • Silva FR; Faculty of Medical Sciences, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil.
  • Dias M; Department of Engineering, University of São Paulo (USP), São Paulo, SP, Brazil.
  • Gomi ES; Department of Engineering, University of São Paulo (USP), São Paulo, SP, Brazil.
J Ophthalmol ; 2013: 789129, 2013.
Article em En | MEDLINE | ID: mdl-24369495
Purpose. To investigate the diagnostic accuracy of machine learning classifiers (MLCs) using retinal nerve fiber layer (RNFL) and optic nerve (ON) parameters obtained with spectral domain optical coherence tomography (SD-OCT). Methods. Fifty-seven patients with early to moderate primary open angle glaucoma and 46 healthy patients were recruited. All 103 patients underwent a complete ophthalmological examination, achromatic standard automated perimetry, and imaging with SD-OCT. Receiver operating characteristic (ROC) curves were built for RNFL and ON parameters. Ten MLCs were tested. Areas under ROC curves (aROCs) obtained for each SD-OCT parameter and MLC were compared. Results. The mean age was 56.5 ± 8.9 years for healthy individuals and 59.9 ± 9.0 years for glaucoma patients (P = 0.054). Mean deviation values were -1.4 dB for healthy individuals and -4.0 dB for glaucoma patients (P < 0.001). SD-OCT parameters with the greatest aROCs were cup/disc area ratio (0.846) and average cup/disc (0.843). aROCs obtained with classifiers varied from 0.687 (CTREE) to 0.877 (RAN). The aROC obtained with RAN (0.877) was not significantly different from the aROC obtained with the best single SD-OCT parameter (0.846) (P = 0.542). Conclusion. MLCs showed good accuracy but did not improve the sensitivity and specificity of SD-OCT for the diagnosis of glaucoma.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Diagnostic_studies Idioma: En Revista: J Ophthalmol Ano de publicação: 2013 Tipo de documento: Article País de afiliação: Brasil País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Diagnostic_studies Idioma: En Revista: J Ophthalmol Ano de publicação: 2013 Tipo de documento: Article País de afiliação: Brasil País de publicação: Estados Unidos