Your browser doesn't support javascript.
loading
Model for the catalytic oxidation of CO, including gas-phase impurities and CO desorption.
Buendía, G M; Rikvold, P A.
Afiliação
  • Buendía GM; Physics Department, Universidad Simón Bolívar, Apartado 89000, Caracas 1080, Venezuela.
Article em En | MEDLINE | ID: mdl-23944439
We present results of kinetic Monte Carlo simulations of a modified Ziff-Gulari-Barshad model for the reaction CO+O → CO(2) on a catalytic surface. Our model includes impurities in the gas phase, CO desorption, and a modification known to eliminate the unphysical O poisoned phase. The impurities can adsorb and desorb on the surface, but otherwise remain inert. In a previous work that did not include CO desorption [Buendía and Rikvold, Phys. Rev. E 85, 031143 (2012)], we found that the impurities have very distinctive effects on the phase diagram and greatly diminish the reactivity of the system. If the impurities do not desorb, once the system reaches a stationary state, the CO(2) production disappears. When the impurities are allowed to desorb, there are regions where the CO(2) reaction window reappears, although greatly reduced. Following experimental evidence that indicates that temperature effects are crucial in many catalytic processes, here we further analyze these effects by including a CO desorption rate. We find that the CO desorption has the effect to smooth the transition between the reactive and the CO rich phase, and most importantly it can counteract the negative effects of the presence of impurities by widening the reactive window such that now the system remains catalytically active in the whole range of CO pressures.
Buscar no Google
Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Phys Rev E Stat Nonlin Soft Matter Phys Assunto da revista: BIOFISICA / FISIOLOGIA Ano de publicação: 2013 Tipo de documento: Article País de afiliação: Venezuela País de publicação: Estados Unidos
Buscar no Google
Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Phys Rev E Stat Nonlin Soft Matter Phys Assunto da revista: BIOFISICA / FISIOLOGIA Ano de publicação: 2013 Tipo de documento: Article País de afiliação: Venezuela País de publicação: Estados Unidos