Your browser doesn't support javascript.
loading
Excess protons in water-acetone mixtures.
Semino, Rocío; Laria, Daniel.
Afiliação
  • Semino R; Departamento de Química Inorgánica Analítica y Química e INQUIMAE, Facultad de Ciencias Exactas y Naturales, Pabellón II, Ciudad Universitaria, (1428) Capital Federal, Argentina.
J Chem Phys ; 136(19): 194503, 2012 May 21.
Article em En | MEDLINE | ID: mdl-22612099
Using molecular dynamics experiments, we analyze equilibrium and dynamical characteristics related to the solvation of excess protons in water-acetone mixtures. Our approach is based on the implementation of an extended valence-bond Hamiltonian, which incorporates translocation of the excess charge between neighboring water molecules. Different mixtures have been analyzed, starting from the pure water case down to solutions with a water molar fraction x(w) = 0.25. In all cases, we have verified that the structure of the first solvation shell of the H(3)O(+) moiety remains practically unchanged, compared to the one observed in pure water. This shell is composed by three water molecules acting as hydrogen bond acceptors, with no evidence of hydrogen bond donor-like connectivity. Moreover, the increment in the acetone concentration leads to a gradual stabilization of Eigen-like [H(3)O[middle dot](H(2)O)(3)](+) configurations, in detriment of Zundel-like [H[middle dot](H(2)O)(2)](+) ones. Rates of proton transfer and proton diffusion coefficients have been recorded at various water-acetone relative concentrations. In both cases, we have found a transition region, in the vicinity of x(w) ∼ 0.8, where the concentration dependences of the two magnitudes change at a quantitative level. A crude estimate shows that, at this tagged concentration, the volumes "occupied" by the two solvents become comparable. The origins of this transition separating water-rich from acetone-rich realms is rationalized in terms of modifications operated in the nearby, second solvation shell, which in the latter solutions, normally includes at least, one acetone molecule. Our results would suggest that one possible mechanism controlling the proton transfer in acetone-rich solutions is the exchange of one of these tagged acetone molecules, by nearby water ones. This exchange would give rise to Zundel-like structures, exhibiting a symmetric, first solvation shell composed exclusively by water molecules, and would facilitate the transfer between neighboring water molecules along the resonant complex.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Chem Phys Ano de publicação: 2012 Tipo de documento: Article País de afiliação: Argentina País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Chem Phys Ano de publicação: 2012 Tipo de documento: Article País de afiliação: Argentina País de publicação: Estados Unidos