Stretched-exponential behavior and random walks on diluted hypercubic lattices.
Phys Rev E Stat Nonlin Soft Matter Phys
; 84(4 Pt 1): 041126, 2011 Oct.
Article
em En
| MEDLINE
| ID: mdl-22181106
Diffusion on a diluted hypercube has been proposed as a model for glassy relaxation and is an example of the more general class of stochastic processes on graphs. In this article we determine numerically through large-scale simulations the eigenvalue spectra for this stochastic process and calculate explicitly the time evolution for the autocorrelation function and for the return probability, all at criticality, with hypercube dimensions N up to N=28. We show that at long times both relaxation functions can be described by stretched exponentials with exponent 1/3 and a characteristic relaxation time which grows exponentially with dimension N. The numerical eigenvalue spectra are consistent with analytic predictions for a generic sparse network model.
Buscar no Google
Coleções:
01-internacional
Base de dados:
MEDLINE
Tipo de estudo:
Clinical_trials
/
Prognostic_studies
Idioma:
En
Revista:
Phys Rev E Stat Nonlin Soft Matter Phys
Assunto da revista:
BIOFISICA
/
FISIOLOGIA
Ano de publicação:
2011
Tipo de documento:
Article
País de afiliação:
Brasil
País de publicação:
Estados Unidos