Your browser doesn't support javascript.
loading
The age and diversification of terrestrial New World ecosystems through Cretaceous and Cenozoic time.
Graham, Alan.
Afiliação
  • Graham A; Missouri Botanical Garden, P. O. Box 299, St Louis, Missouri 63166-0299, USA. alan.graham@mobot.org
Am J Bot ; 98(3): 336-51, 2011 Mar.
Article em En | MEDLINE | ID: mdl-21613130
Eight ecosystems that were present in the Cretaceous about 100 Ma (million years ago) in the New World eventually developed into the 12 recognized for the modern Earth. Among the forcing mechanisms that drove biotic change during this interval was a decline in global temperatures toward the end of the Cretaceous, augmented by the asteroid impact at 65 Ma and drainage of seas from continental margins and interiors; separation of South America from Africa beginning in the south at ca. 120 Ma and progressing northward until completed 90-100 Ma; the possible emission of 1500 gigatons of methane and CO(2) attributed to explosive vents in the Norwegian Sea at ca. 55 Ma, resulting in a temperature rise of 5°-6°C in an already warm world; disruption of the North Atlantic land bridge at ca. 45 Ma at a time when temperatures were falling; rise of the Andes Mountains beginning at ca. 40 Ma; opening of the Drake Passage between South America and Antarctica at ca. 32 Ma with formation of the cold Humboldt at ca. 30 Ma; union of North and South America at ca. 3.5 Ma; and all within the overlay of evolutionary processes. These processes generated a sequence of elements (e.g., species growing in moist habitats within an overall dry environment; gallery forests), early versions (e.g., mangrove communities without Rhizophora until the middle Eocene), and essentially modern versions of present-day New World ecosystems. As a first approximation, the fossil record suggests that early versions of aquatic communities (in the sense of including a prominent angiosperm component) appeared early in the Middle to Late Cretaceous, the lowland neotropical rainforest at 64 Ma (well developed by 58-55 Ma), shrubland/chaparral-woodland-savanna and grasslands around the middle Miocene climatic optimum at ca. 15-13 Ma, deserts in the middle Miocene/early Pliocene at ca. 10 Ma, significant tundra at ca. 7-5 Ma, and alpine tundra (páramo) shortly thereafter when cooling temperatures were augmented by high elevations attained, for example, in the Andes<10 Ma and especially after 7-6 Ma.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Biodiversidade País/Região como assunto: America do sul Idioma: En Revista: Am J Bot Ano de publicação: 2011 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Biodiversidade País/Região como assunto: America do sul Idioma: En Revista: Am J Bot Ano de publicação: 2011 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Estados Unidos