Your browser doesn't support javascript.
loading
Changes in the microbial community during bioremediation of gasoline-contaminated soil
Leal, Aline Jaime; Rodrigues, Edmo Montes; Leal, Patrícia Lopes; Júlio, Aline Daniela Lopes; Fernandes, Rita de Cássia Rocha; Borges, Arnaldo Chaer; Tótola, Marcos Rogério.
Afiliação
  • Leal, Aline Jaime; Instituto Federal Sul-rio-grandense. Bagé. BR
  • Rodrigues, Edmo Montes; Instituto Federal Sul-rio-grandense. Bagé. BR
  • Leal, Patrícia Lopes; Instituto Federal Sul-rio-grandense. Bagé. BR
  • Júlio, Aline Daniela Lopes; Instituto Federal Sul-rio-grandense. Bagé. BR
  • Fernandes, Rita de Cássia Rocha; Instituto Federal Sul-rio-grandense. Bagé. BR
  • Borges, Arnaldo Chaer; Instituto Federal Sul-rio-grandense. Bagé. BR
  • Tótola, Marcos Rogério; Instituto Federal Sul-rio-grandense. Bagé. BR
Braz. j. microbiol ; Braz. j. microbiol;48(2): 342-351, April.-June 2017. tab, graf
Article em En | LILACS | ID: biblio-839370
Biblioteca responsável: BR1.1
ABSTRACT
Abstract We aimed to verify the changes in the microbial community during bioremediation of gasoline-contaminated soil. Microbial inoculants were produced from successive additions of gasoline to municipal solid waste compost (MSWC) previously fertilized with nitrogen-phosphorous. To obtain Inoculant A, fertilized MSWC was amended with gasoline every 3 days during 18 days. Inoculant B received the same application, but at every 6 days. Inoculant C included MSWC fertilized with N–P, but no gasoline. The inoculants were applied to gasoline-contaminated soil at 10, 30, or 50 g/kg. Mineralization of gasoline hydrocarbons in soil was evaluated by respirometric analysis. The viability of the inoculants was evaluated after 103 days of storage under refrigeration or room temperature. The relative proportions of microbial groups in the inoculants and soil were evaluated by FAME. The dose of 50 g/kg of inoculants A and B led to the largest CO2 emission from soil. CO2 emissions in treatments with inoculant C were inversely proportional to the dose of inoculant. Heterotrophic bacterial counts were greater in soil treated with inoculants A and B. The application of inoculants decreased the proportion of actinobacteria and increased of Gram-negative bacteria. Decline in the density of heterotrophic bacteria in inoculants occurred after storage. This reduction was bigger in inoculants stored at room temperature. The application of stored inoculants in gasoline-contaminated soil resulted in a CO2 emission twice bigger than that observed in uninoculated soil. We concluded that MSWC is an effective material for the production of microbial inoculants for the bioremediation of gasoline-contaminated soil.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: LILACS Assunto principal: Microbiologia do Solo / Poluentes do Solo / Gasolina / Carcinógenos Ambientais / Biota Idioma: En Revista: Braz. j. microbiol Assunto da revista: MICROBIOLOGIA Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Brasil País de publicação: Brasil

Texto completo: 1 Coleções: 01-internacional Base de dados: LILACS Assunto principal: Microbiologia do Solo / Poluentes do Solo / Gasolina / Carcinógenos Ambientais / Biota Idioma: En Revista: Braz. j. microbiol Assunto da revista: MICROBIOLOGIA Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Brasil País de publicação: Brasil