Your browser doesn't support javascript.
loading
Drowsiness detection for single channel EEG by DWT best m-term approximation
Silveira, Tiago da; Kozakevicius, Alice de Jesus; Rodrigues, Cesar Ramos.
Afiliação
  • Silveira, Tiago da; Universidade Federal de Santa Maria. Programa de Pós-Graduação em Informática. Santa Maria. BR
  • Kozakevicius, Alice de Jesus; Universidade Federal de Santa Maria. Programa de Pós-Graduação em Informática. Santa Maria. BR
  • Rodrigues, Cesar Ramos; Universidade Federal de Santa Maria. Programa de Pós-Graduação em Informática. Santa Maria. BR
Res. Biomed. Eng. (Online) ; 31(2): 107-115, Apr-Jun/2015. tab, graf
Article em En | LILACS | ID: biblio-829428
Biblioteca responsável: BR1.1
ABSTRACT
Introduction In this paper we propose a promising new technique for drowsiness detection. It consists of applying the best m-term approximation on a single-channel electroencephalography (EEG) signal preprocessed through a discrete wavelet transform. Methods In order to classify EEG epochs as awake or drowsy states, the most significant m terms from the wavelet expansion of an EEG signal are selected according to the magnitude of their coefficients related to the alpha and beta rhythms. Results By using a simple thresholding strategy it provides hit rates comparable to those using more complex techniques. It was tested on a set of 6 hours and 50 minutes EEG drowsiness signals from PhysioNet Sleep Database yielding an overall sensitivity (TPR) of 84.98% and 98.65% of precision (PPV). Conclusion The method has proved itself efficient at separating data from different brain rhythms, thus alleviating the requirement for complex post-processing classification algorithms.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: LILACS Tipo de estudo: Diagnostic_studies Idioma: En Revista: Res. Biomed. Eng. (Online) Assunto da revista: Engenharia Biom‚dica Ano de publicação: 2015 Tipo de documento: Article / Project document País de afiliação: Brasil País de publicação: Brasil

Texto completo: 1 Coleções: 01-internacional Base de dados: LILACS Tipo de estudo: Diagnostic_studies Idioma: En Revista: Res. Biomed. Eng. (Online) Assunto da revista: Engenharia Biom‚dica Ano de publicação: 2015 Tipo de documento: Article / Project document País de afiliação: Brasil País de publicação: Brasil