Effect of Yanghetang-containing Serum on Breast Cancer 4T1 Cells Based on MEK/ERK Signaling Pathway / 中国实验方剂学杂志
Chinese Journal of Experimental Traditional Medical Formulae
; (24): 71-77, 2023.
Article
en Zh
| WPRIM
| ID: wpr-973134
Biblioteca responsable:
WPRO
ABSTRACT
ObjectiveTo investigate the effects of Yanghetang (YHT) on breast cancer 4T1 cells and their mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinase (ERK) signaling pathway. MethodThe YHT-containing serum was prepared from SD rats. The rats were randomly assigned into a blank group (normal saline) and low-, medium-, and high-dose (5.8, 11.6, 23.2 g·kg-1, respectively) YHT groups. The serum containing 10% YHT in each group was mixed with 90% RMPI 1640 complete medium, and the mixture was used to interfere with the cells. Cell counting kit-8 (CCK-8) method was used to detect the proliferation of the 4T1 cells treated with YHT for 24, 48, 72 h. The apoptosis, migration, and invasion of 4T1 cells were detected by flow cytometry, scratch test, and Transwell assay, respectively. Western blot was employed to determine the expression levels of MEK1/2, phosphorylation (p)-MEK1/2, ERK1/2, p-ERK1/2, and rat sarcoma virus (RAS) protein. ResultCompared with the blank group, the intervention with YHT-containing serum for 24, 48, and 72 h had significant inhibitory effect on 4T1 cell proliferation (P<0.05, P<0.01). After intervention with YHT-containing serum for 48 h, the apoptosis rate of cells increased (P<0.01). Compared with the blank group, the intervention with YHT for 24 h and 48 h decreased the healing ability of cells in the scratch test (P<0.01). The invasive ability of cells treated with the low, medium, and high-dose YHT containing serum showed a decreasing trend (P<0.01). Compared with the blank group, YHT-containing serum did not change the expression of MEK1/2 and ERK1/2 while down-regulating the expression of p-MEK1/2, p-ERK1/2, and RAS protein (P<0.01). ConclusionYHT can inhibit the proliferation, migration, and invasion and promote the apoptosis of breast cancer 4T1 cells. In may promote the apoptosis by inhibiting the MEK/ERK signaling pathway and down-regulating the expression of p-MEK1/2, p-ERK1/2, and RAS protein.
Texto completo:
1
Base de datos:
WPRIM
Idioma:
Zh
Revista:
Chinese Journal of Experimental Traditional Medical Formulae
Año:
2023
Tipo del documento:
Article