Your browser doesn't support javascript.
loading
Research on application of modified polyethylene glycol hydrogels in the construction of tissue engineered heart valve / 中华外科杂志
Chinese Journal of Surgery ; (12): 1723-1726, 2008.
Article en Zh | WPRIM | ID: wpr-275979
Biblioteca responsable: WPRO
ABSTRACT
<p><b>OBJECTIVE</b>To explore the effect of the polyethylene glycol (PEG)-hydrogels to enhance the seeding-cells adhesion to the biomaterial scaffolds.</p><p><b>METHODS</b>Sixteen porcine aortic valves were decellularized with Triton X-100 and trypsin, then divided into A and B group, eight in each group. Group A: the donor goat's autologous bone marrow mesenchymal stem cells (BMSCs) Selected as the seeding-cells were encapsulated into the modified PEG-hydrogels to complete the process of the cells attaching to the acellular porcine aortic valves. Non-PEG but reservation of BMSCs was modified in Group B. After static culture for 7 d, the mono semilunar tissue engineering heart valve (TEHV) were implanted respectively into each donor goat's abdominal aortas. Gross and histology examination, ultrasonic scanning, electron microscopy observation and biomechanics detection were performed at 16 weeks after operation. The 8 native goat aortic valves from the donor goats were selected at the same time as control group (Group C).</p><p><b>RESULTS</b>There were much more improvements compared Group A to Group B (P < 0.05) in tensile strength [(12.9 +/- 1.3) MPa vs. (8.8 +/- 0.4) MPa], ratio of re-endothelial (84.6% vs. 14.8%) and mural thrombosis (0/8 vs. 8/8). The data illustrated the critical importance of BMSCs differentiation to endothelial and myofibroblast for remodeling into native tissue in microenvironment in vivo.</p><p><b>CONCLUSIONS</b>It is feasible to reconstruct TEHV efficiently by combining modified PEG-hydrogels with acellular biomaterial scaffold and autologous MSCs cells. It can improve the integration of the seeding-cells and scaffold. It can also protect the growth and differentiation of the BMSCs in the systemic circulation effectively.</p>
Asunto(s)
Texto completo: 1 Base de datos: WPRIM Asunto principal: Válvula Aórtica / Polietilenglicoles / Porcinos / Bioprótesis / Células de la Médula Ósea / Cabras / Prótesis Valvulares Cardíacas / Células Cultivadas / Implantación de Prótesis de Válvulas Cardíacas / Hidrogeles Límite: Animals Idioma: Zh Revista: Chinese Journal of Surgery Año: 2008 Tipo del documento: Article
Texto completo: 1 Base de datos: WPRIM Asunto principal: Válvula Aórtica / Polietilenglicoles / Porcinos / Bioprótesis / Células de la Médula Ósea / Cabras / Prótesis Valvulares Cardíacas / Células Cultivadas / Implantación de Prótesis de Válvulas Cardíacas / Hidrogeles Límite: Animals Idioma: Zh Revista: Chinese Journal of Surgery Año: 2008 Tipo del documento: Article