Biosynthesis of (R)-2-hydroxy-3-phenylpropionic acid using whole recombinant Escherichia coli cells in an aqueous/n-octane biphasic system / 浙江大学学报(英文版)(B辑:生物医学和生物技术)
J. Zhejiang Univ., Sci. B (Internet)
; (12): 285-292, 2018.
Article
en En
| WPRIM
| ID: wpr-1010388
Biblioteca responsable:
WPRO
ABSTRACT
(R)-2-hydroxy-3-phenylpropionic acid (PLA) is an ideal antimicrobial compound with broad-spectrum activity against a wide range of Gram-positive bacteria, some Gram-negative bacteria, and fungi. We studied the bioconversion of phenylpyruvate (PPA) to PLA using whole recombinant Escherichia coli cells in a series of buffer/organic solvent systems. Octane was found to be the best organic solvent. The optimum volume ratio of the water phase to the n-octane phase, conversion temperature, substrate concentration, and cell concentration were 6:4, 40 °C, 12.5 g/L, and 30 g/L wet cells, respectively. Under the optimized conditions, the average PLA productivity in the aqueous/ n-octane system was 30.69% higher than that in the aqueous system, and 32.31 g/L PLA was obtained with the use of a stirred reactor (2-L scale). Taken together, our findings indicated that PLA biosynthesis was more efficient in an aqueous/n-octane biphasic system than in a monophasic aqueous system. The proposed biphasic system is an effective strategy for enhancing PLA yield and the biosynthesis of its analogues.
Palabras clave
Texto completo:
1
Base de datos:
WPRIM
Asunto principal:
Fenilpropionatos
/
Solventes
/
Estrés Mecánico
/
Temperatura
/
Proteínas Recombinantes
/
Tampones (Química)
/
Escherichia coli
/
Microorganismos Modificados Genéticamente
/
L-Lactato Deshidrogenasa
/
Octanos
Idioma:
En
Revista:
J. Zhejiang Univ., Sci. B (Internet)
Año:
2018
Tipo del documento:
Article