Este articulo es un Preprint
Los preprints son informes de investigación preliminares que no han sido certificados por revisión por pares. No deben considerarse para guiar la práctica clínica o los comportamientos relacionados con la salud y no deben publicarse en los medios como información establecida.
Los preprints publicados en línea permiten a los autores recibir comentarios rápidamente, y toda la comunidad científica puede evaluar de forma independiente el trabajo y responder adecuadamente. Estos comentarios se publican junto con los preprints para que cualquiera pueda leer y servir como una revisión pospublicación.
Risk factors for severe COVID-19 differ by age: a retrospective study of hospitalized adults
Preprint
en En
| PREPRINT-MEDRXIV
| ID: ppmedrxiv-22270287
ABSTRACT
BackgroundRisk stratification for hospitalized adults with COVID-19 is essential to inform decisions for individual patients and allocation of potentially scarce resources. So far, risk models for severe COVID outcomes have included age but have not been optimized to best serve the needs of either older or younger adults. Additionally, existing risk models have been limited to either small sample sizes, or modeling mortality over an entire hospital admission. Further, previous models were developed on data from early in the pandemic, before improvements in COVID-19 treatment, the SARS-CoV-2 delta variant, and vaccination. There remains a need for early, accurate identification of patients who may need invasive mechanical ventilation (IMV) or die, considering multiple time horizons. MethodsThis retrospective study analyzed data from 6,906 hospitalized adults with COVID-19 from a community health system with 51 hospitals and 1085 clinics across five states in the western United States. Risk models were developed to predict mechanical ventilation illness or death across one to 56 days of hospitalization, using clinical data collected available within the first hour after either admission with COVID-19 or a first positive SARS-CoV-2 test. The relative importance of predictive risk factors features for all models was determined using Shapley additive explanations. FindingsThe percentage of patients who required mechanical ventilation or died within seven days of admission to the hospital due to COVID-19 was 10.82%. For the seven-day interval, models for age [≥] 18 and < 50 years reached AUROC 0.80 (95% CI 0.70-0.89) and models for age [≥] 50 years reached AUROC 0.83 (95% CI 0.79-0.88). Models revealed differences in the statistical significance and relative predictive value of risk factors between older and younger patients, including age, BMI, vital signs, and laboratory results. In addition, sex and chronic comorbidities had lower predictive value than vital signs and laboratory results. InterpretationFor hospitalized adults, baseline data that is readily available within one hour after hospital admission or a first positive inpatient SARS-CoV-2 test can predict critical illness within one day, and up to 56 days later. Further, the relative importance of risk factors differs between older and younger patients.
cc_by
Texto completo:
1
Colección:
09-preprints
Base de datos:
PREPRINT-MEDRXIV
Tipo de estudio:
Observational_studies
/
Prognostic_studies
Idioma:
En
Año:
2022
Tipo del documento:
Preprint