Este articulo es un Preprint
Los preprints son informes de investigación preliminares que no han sido certificados por revisión por pares. No deben considerarse para guiar la práctica clínica o los comportamientos relacionados con la salud y no deben publicarse en los medios como información establecida.
Los preprints publicados en línea permiten a los autores recibir comentarios rápidamente, y toda la comunidad científica puede evaluar de forma independiente el trabajo y responder adecuadamente. Estos comentarios se publican junto con los preprints para que cualquiera pueda leer y servir como una revisión pospublicación.
Deconvoluting complex correlates of COVID19 severity with local ancestry inference and viral phylodynamics: Results of a multiomic pandemic tracking strategy
Preprint
en En
| PREPRINT-MEDRXIV
| ID: ppmedrxiv-21261547
ABSTRACT
The SARS-CoV-2 pandemic has differentially impacted populations of varied race, ethnicity and socioeconomic status. Admixture mapping and local ancestry inference represent powerful tools to examine genetic risk within multi-ancestry genomes independent of these confounding social constructs. Here, we leverage a pandemic tracking strategy in which we sequence viral and host genomes and transcriptomes from 1,327 nasopharyngeal swab residuals and integrate them with digital phenotypes from electronic health records. We demonstrate over-representation of individuals possessing Oceanian and Indigenous American ancestry in SARS-CoV-2 positive populations. Genome-wide-association disaggregated by admixture mapping reveals regions of chromosomes 5 and 14 associated with COVID19 severity within African and Oceanic local ancestries, respectively, independent of overall ancestry fraction. Phylodynamic tracking of consensus viral genomes reveals no association with disease severity or inferred ancestry. We further present summary data from a multi-omic investigation of human-leukocyte-antigen (HLA) typing, nasopharyngeal microbiome and human transcriptomics that reveal metagenomic and HLA associations with severe COVID19 infection. This work demonstrates the power of multi-omic pandemic tracking and genomic analyses to reveal distinct epidemiologic, genetic and biological associations for those at the highest risk.
cc_no
Texto completo:
1
Colección:
09-preprints
Base de datos:
PREPRINT-MEDRXIV
Tipo de estudio:
Prognostic_studies
Idioma:
En
Año:
2021
Tipo del documento:
Preprint