Este articulo es un Preprint
Los preprints son informes de investigación preliminares que no han sido certificados por revisión por pares. No deben considerarse para guiar la práctica clínica o los comportamientos relacionados con la salud y no deben publicarse en los medios como información establecida.
Los preprints publicados en línea permiten a los autores recibir comentarios rápidamente, y toda la comunidad científica puede evaluar de forma independiente el trabajo y responder adecuadamente. Estos comentarios se publican junto con los preprints para que cualquiera pueda leer y servir como una revisión pospublicación.
From predictions to prescriptions: A data-drivenresponse to COVID-19
Preprint
en En
| PREPRINT-MEDRXIV
| ID: ppmedrxiv-20141127
Artículo de revista
Un artículo publicado en revista científica está disponible y probablemente es basado en este preprint, por medio del reconocimiento de similitud realizado por una máquina. La confirmación humana aún está pendiente.
Ver artículo de revista
Un artículo publicado en revista científica está disponible y probablemente es basado en este preprint, por medio del reconocimiento de similitud realizado por una máquina. La confirmación humana aún está pendiente.
Ver artículo de revista
ABSTRACT
The COVID-19 pandemic has created unprecedented challenges worldwide. Strained healthcare providers make difficult decisions on patient triage, treatment and care management on a daily basis. Policy makers have imposed social distancing measures to slow the disease, at a steep economic price. We design analytical tools to support these decisions and combat the pandemic. Specifically, we propose a comprehensive data-driven approach to understand the clinical characteristics of COVID-19, predict its mortality, forecast its evolution, and ultimately alleviate its impact. By leveraging cohort-level clinical data, patient-level hospital data, and census-level epidemiological data, we develop an integrated four-step approach, combining descriptive, predictive and prescriptive analytics. First, we aggregate hundreds of clinical studies into the most comprehensive database on COVID-19 to paint a new macroscopic picture of the disease. Second, we build personalized calculators to predict the risk of infection and mortality as a function of demographics, symptoms, comorbidities, and lab values. Third, we develop a novel epidemiological model to project the pandemics spread and inform social distancing policies. Fourth, we propose an optimization model to reallocate ventilators and alleviate shortages. Our results have been used at the clinical level by several hospitals to triage patients, guide care management, plan ICU capacity, and re-distribute ventilators. At the policy level, they are currently supporting safe back-to-work policies at a major institution and equitable vaccine distribution planning at a major pharmaceutical company, and have been integrated into the US Center for Disease Controls pandemic forecast. Significance StatementIn the midst of the COVID-19 pandemic, healthcare providers and policy makers are wrestling with unprecedented challenges. How to treat COVID-19 patients with equipment shortages? How to allocate resources to combat the disease? How to plan for the next stages of the pandemic? We present a data-driven approach to tackle these challenges. We gather comprehensive data from various sources, including clinical studies, electronic medical records, and census reports. We develop algorithms to understand the disease, predict its mortality, forecast its spread, inform social distancing policies, and re-distribute critical equipment. These algorithms provide decision support tools that have been deployed on our publicly available website, and are actively used by hospitals, companies, and policy makers around the globe.
cc_by
Texto completo:
1
Colección:
09-preprints
Base de datos:
PREPRINT-MEDRXIV
Tipo de estudio:
Cohort_studies
/
Observational_studies
/
Prognostic_studies
Idioma:
En
Año:
2020
Tipo del documento:
Preprint