Your browser doesn't support javascript.
loading
A novel cell culture system modeling the SARS-CoV-2 life cycle
Xiaohui Ju; Yunkai Zhu; Yuyan Wang; Jingrui Li; Jiaxing Zhang; Mingli Gong; Wenlin Ren; Sai Li; Jin Zhong; Qiangfeng Cliff Zhang; Rong Zhang; Qiang Ding.
Afiliación
  • Xiaohui Ju; Tsinghua University
  • Yunkai Zhu; Fudan University
  • Yuyan Wang; Fudan University
  • Jingrui Li; China Agricultural University
  • Jiaxing Zhang; Tsinghua University
  • Mingli Gong; Tsinghua University
  • Wenlin Ren; Tsinghua University
  • Sai Li; Tsinghua University
  • Jin Zhong; Institut Pasteur of Shanghai, Chinese Academy of Sciences
  • Qiangfeng Cliff Zhang; Tsinghua University
  • Rong Zhang; Fudan University,
  • Qiang Ding; Tsinghua University
Preprint en En | PREPRINT-BIORXIV | ID: ppbiorxiv-422469
Artículo de revista
Un artículo publicado en revista científica está disponible y probablemente es basado en este preprint, por medio del reconocimiento de similitud realizado por una máquina. La confirmación humana aún está pendiente.
Ver artículo de revista
ABSTRACT
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes the global pandemic of COVID-19, and no effective antiviral agents and vaccines are available. SARS-CoV-2 is classified as a biosafety level-3 (BLS-3) agent, impeding the basic research into its biology and the development of effective antivirals. Here, we developed a biosafety level-2 (BSL-2) cell culture system for production of transcription and replication-competent SARS-CoV-2 virus-like-particles (trVLP). This trVLP expresses a reporter gene (GFP) replacing viral nucleocapsid gene (N), which is required for viral genome packaging and virion assembly (SARS-CoV-2-GFP/{Delta}N trVLP). The complete viral life cycle can be achieved and exclusively confined in the cells ectopically expressing SARS-CoV or SARS-CoV-2 N proteins, but not MERS-CoV N. Genetic recombination of N supplied in trans into viral genome was not detected, as evidenced by sequence analysis after one-month serial passages in the N-expressing cells. Moreover, intein-mediated protein trans-splicing approach was utilized to split the viral N gene into two independent vectors, and the ligated viral N protein could function in trans to recapitulate entire viral life cycle, further securing the biosafety of this cell culture model. Based on this BSL-2 SARS-CoV-2 cell culture model, we developed a 96-well format high throughput screening for antivirals discovery. We identified salinomycin, tubeimoside I, monensin sodium, lycorine chloride and nigericin sodium as potent antivirals against SARS-CoV-2 infection. Collectively, we developed a convenient and efficient SARS-CoV-2 reverse genetics tool to dissect the virus life cycle under a BSL-2 condition. This powerful tool should accelerate our understanding of SARS-CoV-2 biology and its antiviral development.
Licencia
cc_no
Texto completo: 1 Colección: 09-preprints Base de datos: PREPRINT-BIORXIV Tipo de estudio: Diagnostic_studies Idioma: En Año: 2020 Tipo del documento: Preprint
Texto completo: 1 Colección: 09-preprints Base de datos: PREPRINT-BIORXIV Tipo de estudio: Diagnostic_studies Idioma: En Año: 2020 Tipo del documento: Preprint