Este articulo es un Preprint
Los preprints son informes de investigación preliminares que no han sido certificados por revisión por pares. No deben considerarse para guiar la práctica clínica o los comportamientos relacionados con la salud y no deben publicarse en los medios como información establecida.
Los preprints publicados en línea permiten a los autores recibir comentarios rápidamente, y toda la comunidad científica puede evaluar de forma independiente el trabajo y responder adecuadamente. Estos comentarios se publican junto con los preprints para que cualquiera pueda leer y servir como una revisión pospublicación.
The SARS-CoV-2 multibasic cleavage site facilitates early serine protease-mediated entry into organoid-derived human airway cells
Preprint
en En
| PREPRINT-BIORXIV
| ID: ppbiorxiv-286120
ABSTRACT
After the SARS-CoV outbreak in 2003, a second zoonotic coronavirus named SARS-CoV-2, emerged late 2019 in China and rapidly caused the COVID-19 pandemic leading to a public health crisis of an unprecedented scale. Despite the fact that SARS-CoV-2 uses the same receptor as SARS-CoV, transmission and pathogenesis of both viruses seem to be quite distinct. A remarkable feature of the SARS-CoV-2 spike is the presence of a multibasic cleavage site, which is absent in the SARS-CoV spike. The viral spike protein not only attaches to the entry receptor, but also mediates fusion after cleavage by host proteases. Here, we report that the SARS-CoV-2 spike multibasic cleavage site increases infectivity on differentiated organoid-derived human airway cells. Compared with SARS-CoV, SARS-CoV-2 entered faster into the lung cell line Calu-3, and more frequently formed syncytial cells in differentiated organoid-derived human airway cells. Moreover, the multibasic cleavage site increased entry speed and plasma membrane serine protease usage relative to endosomal entry using cathepsins. Blocking serine protease activity using the clinically approved drug camostat mesylate effectively inhibited SARS-CoV-2 entry and replication in differentiated organoid-derived human airway cells. Our findings provide novel information on how SARS-CoV-2 enters relevant airway cells and highlight serine proteases as an attractive antiviral target. Significance StatementHighly pathogenic coronaviruses have spilled from animals to humans three times in the past two decades. Late 2019, SARS-CoV-2 emerged in China and was declared a pandemic by March 2020. The other two highly pathogenic coronaviruses, SARS-CoV and MERS-CoV, emerged in 2002 and 2012, respectively, but did not attain sustained human-to-human transmission. Given the high diversity of coronaviruses in animals, urbanization and increased air travel, future coronavirus pandemics are likely to occur intermittently. Identifying which factors determine pandemic potential and pathogenicity are therefore of key importance to global health. Additionally, there is an urgent need to rapidly translate fundamental knowledge to the clinic, a process that is expedited through the use of relevant cell culture systems.
cc_by_nc_nd
Texto completo:
1
Colección:
09-preprints
Base de datos:
PREPRINT-BIORXIV
Tipo de estudio:
Prognostic_studies
Idioma:
En
Año:
2020
Tipo del documento:
Preprint