Modulation of skeletal muscle Ca2(+)-release channel activity by sphingosine.
Am J Physiol
; 272(5 Pt 1): C1465-74, 1997 May.
Article
en En
| MEDLINE
| ID: mdl-9176136
The effect of D-erythro-C18-sphingosine (sphingosine) and related compounds on the Ca(2+)-release channel (ryanodine binding protein) was examined on rabbit skeletal muscle membranes, on the purified ryanodine binding protein, and on the channel reconstituted into planar lipid bilayers. Sphingosine inhibited [3H]ryanodine binding to sarcoplasmic reticulum (SR) membranes in a dose-dependent manner similar to published results (R. A. Sabbadini, R. Betto, A. Teresi, G. Fachechi-Cassano, and G. Salviati. J. Biol. Chem. 267: 15475-15484, 1992). The sphingolipid also inhibited [3H]ryanodine binding to the purified ryanodine binding protein. Our results demonstrate that the inhibition of [3H]ryanodine binding by sphingosine is due to an increased rate of dissociation of bound [3H]ryanodine from SR membranes and a decreased rate of association of [3H]ryanodine to the high-affinity site. Unlike other modulators of the Ca(2+)-release channel, sphingosine can remove bound [3H]ryanodine from the high-affinity site within minutes. Sphingosine increased the rate of dissociation of [3H]ryanodine bound to a solubilized proteolytic fragment derived from the carboxy terminus of the ryanodine binding protein (cleavage at Arg4475). Sphingosine also inhibited the activity of the Ca(2+)-release channel incorporated into planar lipid bilayers. Taken together, the data provide evidence for a direct effect of sphingosine on the Ca(2+)-release channel. Sphingosine is a noncompetitive inhibitor at the high-affinity ryanodine binding site, and it interacts with a site between Arg4475 and the carboxy terminus of the Ca(2+)-release channel.
Buscar en Google
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Esfingosina
/
Canales de Calcio
/
Músculo Esquelético
Límite:
Animals
Idioma:
En
Revista:
Am J Physiol
Año:
1997
Tipo del documento:
Article
País de afiliación:
Estados Unidos
Pais de publicación:
Estados Unidos