Cripto enhances the tyrosine phosphorylation of Shc and activates mitogen-activated protein kinase (MAPK) in mammary epithelial cells.
J Biol Chem
; 272(6): 3330-5, 1997 Feb 07.
Article
en En
| MEDLINE
| ID: mdl-9013573
Cripto-1 (CR-1), a recently discovered protein of the epidermal growth factor (EGF) family, was found to interact with a high affinity, saturable binding site(s) on HC-11 mouse mammary epithelial cells and on several different human breast cancer cell lines. This receptor exhibits specificity for CR-1, since other EGF-related peptides including EGF, transforming growth factor alpha, heparin-binding EGF-like growth factor, amphiregulin, epiregulin, betacellulin, or heregulin beta1 that bind to either the EGF receptor or to other type 1 receptor tyrosine kinases such as erb B-3 or erb B-4 fail to compete for binding. Conversely, CR-1 was found not to directly bind to or to activate the tyrosine kinases associated with the EGFR, erb B-2, erb B-3, or erb B-4 either alone or in various pairwise combinations which have been ectopically expressed in Ba/F3 mouse pro-B lymphocyte cells. However, exogenous CR-1 could induce an increase in the tyrosine phosphorylation of 185- and 120-kDa proteins and a rapid (within 3-5 min) increase in the tyrosine phosphorylation of the SH2-containing adaptor proteins p66, p52, and p46 Shc in mouse mammary HC-11 epithelial cells and in human MDA-MB-453 and SKBr-3 breast cancer cells. CR-1 was also found to promote an increase in the association of the adaptor Grb2-guanine nucleotide exchange factor-mouse son of sevenless (mSOS) signaling complex with tyrosine-phosphorylated Shc in HC-11 cells. Finally, CR-1 was able to increase p42(erk-2) mitogen-activated protein kinase (MAPK) activity in HC-11 cells within 5-10 min of treatment. These data demonstrate that CR-1 can function through a receptor which activates intracellular components in the ras/raf/MEK/MAPK pathway.
Buscar en Google
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Tirosina
/
Glicoproteínas de Membrana
/
Sustancias de Crecimiento
/
Proteínas Quinasas Dependientes de Calcio-Calmodulina
/
Dominios Homologos src
/
Factor de Crecimiento Epidérmico
/
Glándulas Mamarias Animales
/
Proteínas de Neoplasias
Límite:
Animals
/
Female
/
Humans
Idioma:
En
Revista:
J Biol Chem
Año:
1997
Tipo del documento:
Article
País de afiliación:
Estados Unidos
Pais de publicación:
Estados Unidos