The small GTP-binding protein rho activates c-Jun N-terminal kinases/stress-activated protein kinases in human kidney 293T cells. Evidence for a Pak-independent signaling pathway.
J Biol Chem
; 271(42): 25731-4, 1996 Oct 18.
Article
en En
| MEDLINE
| ID: mdl-8824197
Work from a number of laboratories has established a role for certain small GTP-binding proteins in controlling the enzymatic activity of a family of serine-threonine kinases known as mitogen-activated protein kinases (MAPKs). MAPKs have been classified into three subfamilies: extracellular signal-regulated kinases (ERKs), also known as MAPKs; c-Jun N-terminal kinases (JNKs); and p38 kinase. Whereas Ras controls the activation of MAPKs, we and others have recently observed that in certain cells, the small GTP-binding proteins Rac1 and Cdc42 but not Rho regulate the activity of JNKs. Furthermore, because Rac1 and Cdc42 but not Rho bind and activate a kinase known as Pak1, it has been suggested that Pak1 is the most upstream component of the pathway linking these GTPases to JNK. However, in both yeast and mammalian cells, Rho1p, a Rho homologue, and RhoA, respectively, directly interact with a number of proteins, including kinases related to protein kinase C. In addition, in yeast, Rho1p controls the activity of a MAPK cascade involved in bud formation. Considering this diversity of target molecules for small GTP-binding proteins, their likely tissue specific distribution, and the potential role for Rho in signaling to a kinase cascade, we decided to extend our initial analysis, exploring the ability of Ras and Rho-related GTP-binding proteins to activate MAPK or JNK in a variety of cell lines. We found that in the human kidney epithelial cell line, 293T, Cdc42 and all Rho proteins, RhoA, RhoB, and RhoC, but not Rac or Ras can induce activation of JNK. Furthermore, we provide evidence that signaling from Rho proteins to JNK in 293T cells does not involve Pak1. Taken together these findings demonstrate that Rho signals to JNK in a cell type-specific manner and suggest the existence of a novel, Pak1-independent signaling route communicating the Rho family of small GTP-binding proteins to the JNK pathway.
Buscar en Google
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Transducción de Señal
/
Proteínas Quinasas Dependientes de Calcio-Calmodulina
/
Proteínas de Unión al GTP
/
Proteínas Quinasas Activadas por Mitógenos
/
Proteínas de Saccharomyces cerevisiae
/
Riñón
Límite:
Animals
/
Humans
Idioma:
En
Revista:
J Biol Chem
Año:
1996
Tipo del documento:
Article
País de afiliación:
Estados Unidos
Pais de publicación:
Estados Unidos