Developmental changes in Ca(2+)-uptake, Na+,Ca(2+)-exchange and Ca(2+)-ATPase in freshly isolated embryonic, newborn and adult chicken heart.
Reprod Fertil Dev
; 8(1): 71-8, 1996.
Article
en En
| MEDLINE
| ID: mdl-8713724
Developmental changes in cellular Ca(2+)-transport mechanisms were studied in chick heart by determining cellular Ca(2+)-uptake and Na+,Ca(2+)-exchange activity in freshly isolated ventricular tissues of embryonic (5-18 days old), newborn (1-2 days old) and young adult (90-100 days old) heart by monitoring 45Ca influx. Ca(2+)-ATPase activity was determined in microsomal fractions at different stages of development. The Ca(2+)-uptake (per g wet tissue weight) increased with the development of embryonic as well as post-hatch chick heart, reaching a maximum in the young adult chicken. The overall increase in Ca(2+)-uptake, from embryonic day 5 to young-adult stage, was more than 3 fold. The Na+,Ca(2+)-exchange activity, determined as Na(+)-gradient-induced Ca(2+)-uptake in presence of either ouabain or zero [Na+]0, showed a 6-fold increase during development of heart from the embryonic day 5 to the young adult stage. Amiloride, an inhibitor of Na+,Ca(2+)-exchange, caused a dose-dependent reduction in a ouabain-induced rise in 45Ca influx at different stages of development. The inhibitory effect of amiloride was, however, greater during later stages of development. A progressive increase in Ca(2+)-ATPase activity was also seen during development. Ca(2+)-ATPase exhibited about a 4-fold increase in activity from embryonic day 7 to the young adult. The concomitant increase in Ca(2+)-uptake, Na+,Ca(2+)-exchange and Ca(2+)-ATPase activities suggests age-dependent changes in Ca(2+)-transport and storage systems of developing heart during embryogenesis and post-embryonic life. During embryogenesis the developmental increase in Na+,Ca(2+)-exchange activity was greater than that during post-hatch development of heart. However, the increase in Ca(2+)-ATPase activity was greater during post-hatch development than during embryogenesis. It is suggested that Na+,Ca(2+)-exchange and Ca(2+)-ATPase play a prominent role in maintaining cellular Ca2+ homeostasis during embryogenesis and after hatching.
Buscar en Google
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Sodio
/
Proteínas Portadoras
/
Calcio
/
ATPasas Transportadoras de Calcio
/
Miocardio
Límite:
Animals
Idioma:
En
Revista:
Reprod Fertil Dev
Asunto de la revista:
MEDICINA REPRODUTIVA
Año:
1996
Tipo del documento:
Article
País de afiliación:
India
Pais de publicación:
Australia