Global brain ischemia and reperfusion.
Ann Emerg Med
; 27(5): 588-94, 1996 May.
Article
en En
| MEDLINE
| ID: mdl-8629779
Brain damage accompanying cardiac arrest and resuscitation is frequent and devastating. Neurons in the hippocampus CA1 and CA4 zones and cortical layers III and V are selectively vulnerable to death after injury by ischemia and reperfusion. Ultrastructural evidence indicates that most of the structural damage is associated with reperfusion, during which the vulnerable neurons develop disaggregation of polyribosomes, peroxidative damage to unsaturated fatty acids in the plasma membrane, and prominent alterations in the structure of the Golgi apparatus that is responsible for membrane assembly. Reperfusion is also associated with vulnerable neurons with prominent production of messenger RNAs for stress proteins and for the proteins of the activator protein-1 complex, but these vulnerable neurons fail to efficiently translate these messages into the proteins. The inhibition of protein synthesis during reperfusion involves alteration of translation initiation factors, specifically serine phosphorylation of the alpha-subunit of eukaryotic initiation factor-2 (elF-2 alpha). Growth factors--in particular, insulin--have the potential to reverse phosphorylation of elF-2 alpha, promote effective translation of the mRNA transcripts generated in response to ischemia and reperfusion, enhance neuronal defenses against radicals, and stimulate lipid synthesis and membrane repair. There is now substantial evidence that the insulin-class growth factors have neuron-sparing effects against damage by radicals and ischemia and reperfusion. This new knowledge may provide a fundamental basis for a rational approach to "cerebral resuscitation" that will allow substantial amelioration of the often dismal neurologic outcome now associated with resuscitation from cardiac arrest.
Buscar en Google
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Daño por Reperfusión
/
Isquemia Encefálica
/
Reanimación Cardiopulmonar
/
Paro Cardíaco
Tipo de estudio:
Etiology_studies
/
Risk_factors_studies
Límite:
Humans
Idioma:
En
Revista:
Ann Emerg Med
Año:
1996
Tipo del documento:
Article
País de afiliación:
Estados Unidos
Pais de publicación:
Estados Unidos