Your browser doesn't support javascript.
loading
Sulfate detection in glycoprotein-derived oligosaccharides by artificial neural network analysis of Fourier-transform infrared spectra.
Powell, D A; Turula, V; de Haseth, J A; van Halbeek, H; Meyer, B.
Afiliación
  • Powell DA; Complex Carbohydrate Research Center, University of Georgia, Athens 30602-4712.
Anal Biochem ; 220(1): 20-7, 1994 Jul.
Article en En | MEDLINE | ID: mdl-7978246
We report the use of an artificial neural network to analyze the fingerprint region of Fourier-transform infrared (ir) spectra of oligosaccharides for the presence of sulfate groups. This assay can rapidly and nondestructively detect the presence of sulfate in as little as 1 nmol (approximately 2 micrograms) of a glycoprotein-derived monosulfated decasaccharide. The neural network was trained to recognize the presence of sulfate groups by presenting it with 45 ir spectra of sulfated and nonsulfated mono- and oligosaccharides. No prior knowledge of the characteristic ir spectral features of a sulfate group was needed as input. The training process required between 3 and 10 h, while analysis of a spectrum with the trained neural network requires only 0.1 s.
Asunto(s)
Buscar en Google
Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Oligosacáridos / Ésteres del Ácido Sulfúrico / Glicoproteínas / Redes Neurales de la Computación Tipo de estudio: Diagnostic_studies / Prognostic_studies Idioma: En Revista: Anal Biochem Año: 1994 Tipo del documento: Article Pais de publicación: Estados Unidos
Buscar en Google
Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Oligosacáridos / Ésteres del Ácido Sulfúrico / Glicoproteínas / Redes Neurales de la Computación Tipo de estudio: Diagnostic_studies / Prognostic_studies Idioma: En Revista: Anal Biochem Año: 1994 Tipo del documento: Article Pais de publicación: Estados Unidos