Your browser doesn't support javascript.
loading
Influence of Pesticide Application Method, Timing, and Rate on Contamination of Nectar with Systemic and Nonsystemic Pesticides.
Rostán, Vanesa; Wilson, Patrick C; Wilson, Sandra B; van Santen, Edzard.
Afiliación
  • Rostán V; Department of Soil, Water, and Ecosystem Sciences, University of Florida, Gainesville, Florida, USA.
  • Wilson PC; Department of Soil, Water, and Ecosystem Sciences, University of Florida, Gainesville, Florida, USA.
  • Wilson SB; Department of Environmental Horticulture, University of Florida, Gainesville, Florida, USA.
  • van Santen E; Statistical Consulting Unit, Institute for Food and Agricultural Sciences and Agronomy Department, University of Florida, Gainesville, Florida, USA.
Environ Toxicol Chem ; 2024 Sep 18.
Article en En | MEDLINE | ID: mdl-39291915
ABSTRACT
Exposure to pesticides is one potential factor contributing to the recent loss of pollinators and pollinator diversity. Few studies have specifically focused on the relationship between pesticide management during ornamental plant production and contamination of nectar. We evaluated contamination of nectar in Salvia 'Indigo Spires' (Salvia longispicata M. Martens & Galeotti × S. farinacea Benth.) associated with applications of the systemic insecticide thiamethoxam, and the nonsystemic fungicides boscalid and pyraclostrobin. Applications were made at the labeled rates for the commercially available products, and we compared the influence of application method (drench vs. spray), timing (relative to flowering), and rate (low vs. high) for each pesticide. Nectar was sampled using 50-µL microcapillary tubes and analyzed by liquid chromatography-tandem mass spectrometry. The results indicate that concentrations from the spray application resulted in the least contamination of nectar with the systemic thiamethoxam, with lower concentrations occurring when thiamethoxam was applied before blooming at the lowest rate. Concentrations of thiamethoxam and its metabolite clothianidin were detected in nectar in all treatments (regardless of the method, timing, or rate of application), and ranged from 3.6 ± 0.5 ng/mL (spray-applied before blooming, low rate) to 1720.0 ± 80.9 ng/mL (drench-applied after blooming, high rate). Residues of clothianidin in nectar ranged from below quantification limits (spray-applied before blooming, low rate) to 81.2 ± 4.6 ng/mL (drench-applied after blooming, high rate). Drench applications resulted in the highest levels of nectar contamination with thiamethoxam, and exceeded published median lethal concentrations (LC50s/median lethal doses for native bees and/or honeybees in all cases). Spray treatments resulted in nectar concentrations exceeding published LC50s for some bee species. In comparison, all nonsystemic treatments resulted in concentrations much lower than the published no-observable-effect doses and sublethal toxicity values, indicating low risks of toxicity. Environ Toxicol Chem 2024;0011-12. © 2024 SETAC.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Environ Toxicol Chem Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Environ Toxicol Chem Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos