Your browser doesn't support javascript.
loading
Ampere-Level Hydrogen Generation via 1000 H Stable Seawater Electrolysis Catalyzed by Pt-Cluster-Loaded NiFeCo Phosphide.
Zhou, Linlin; Wan, Tong; Zhong, Yang; Liu, Wei; Yu, Linfeng; Li, Tianshui; Sun, Kai; Waterhouse, Geoffrey I N; Xu, Haijun; Kuang, Yun; Zhou, Daojin; Sun, Xiaoming.
Afiliación
  • Zhou L; State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
  • Wan T; State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
  • Zhong Y; Weichai Power Co., Ltd., Weifang, 261061, China.
  • Liu W; State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
  • Yu L; State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
  • Li T; State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
  • Sun K; School of Chemical Sciences, the University of Auckland, Auckland, 1010, New Zealand.
  • Waterhouse GIN; School of Chemical Sciences, the University of Auckland, Auckland, 1010, New Zealand.
  • Xu H; State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
  • Kuang Y; Ocean Hydrogen Energy R&D Center, Research Institute of Tsinghua University in Shenzhen, Shenzhen, 518057, China.
  • Zhou D; State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
  • Sun X; State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
Small ; : e2406076, 2024 Sep 17.
Article en En | MEDLINE | ID: mdl-39289826
ABSTRACT
Seawater electrolysis can generate carbon-neutral hydrogen but its efficiency is hindered by the low mass activity and poor stability of commercial catalysts at industrial current densities. Herein, Pt nanoclusters are loaded on nickel-iron-cobalt phosphide nanosheets, with the obtained Pt@NiFeCo-P electrocatalyst exhibiting excellent hydrogen evolution reaction (HER) activity and stability in alkaline seawater at ampere-level current densities. The catalyst delivers an ultralow HER overpotential of 19.7 mV at -10 mA cm-2 in seawater-simulating alkaline solutions, along with a Pt-mass activity 20.8 times higher than Pt/C under the same conditions, while dropping to 8.3 mV upon a five-fold NaCl concentrated natural seawater. Remarkably, Pt@NiFeCo-P offers stable operation for over 1000 h at 1 A cm-2 in an alkaline brine electrolyte, demonstrating its potential for efficient and long-term seawater electrolysis. X-ray photoelectron spectroscopy (XPS), in situ electrochemical impedance spectroscopy (EIS), and in situ Raman studies revealed fast electron and charge transfer from the NiFeCo-P substrate to Pt nanoclusters enabled by a strong metal-support interaction, which increased the coverage of H* and accelerated water dissociation on high valent Co sites. This study represents a significant advancement in the development of efficient and stable electrocatalysts with high mass activity for sustainable hydrogen generation from seawater.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Small Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Alemania

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Small Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Alemania