Your browser doesn't support javascript.
loading
Molecular characteristic, evolution, and pathogenicity analysis of avian infectious bronchitis virus isolates associated with QX type in China.
Lu, Yuanlu; Zeng, Yiran; Luo, Haowei; Qiao, Bingchen; Meng, Qi; Dai, Zijian; Chen, Na; Zhao, Lingcai; Meng, Xianchen; Zhang, Haitao; Xia, Jun; Ping, Jihui.
Afiliación
  • Lu Y; MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
  • Zeng Y; MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
  • Luo H; MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
  • Qiao B; MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
  • Meng Q; MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
  • Dai Z; MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
  • Chen N; MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
  • Zhao L; MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
  • Meng X; Lihua Nanjing Industrial Research Institute Co. Ltd. Nanjing, 213168, China; Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009 China.
  • Zhang H; Lihua Nanjing Industrial Research Institute Co. Ltd. Nanjing, 213168, China.
  • Xia J; Key Laboratory for Prevention and Control of Herbivorous Animal Diseases of the Ministry of Agriculture and Rural Affairs & Xinjiang Animal Disease Research Key Laboratory, Xinjiang Academy of Animal Sciences Institute of Veterinary Medicine, 830000, China. Electronic address: 1065291747@qq.com.
  • Ping J; MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China. Electronic address: jihui.ping@njau.edu.cn.
Poult Sci ; 103(12): 104256, 2024 Aug 28.
Article en En | MEDLINE | ID: mdl-39288718
ABSTRACT
Infectious bronchitis virus (IBV) is one of the major avian pathogens plaguing the global poultry industry. Although vaccination is the primary preventive measure for IBV infection, the emergence of virus variants with mutations and recombination has resulted in IBV circulating globally, presenting a challenge for IB control. Here, we isolated 3 IBV strains (CZ200515, CZ210840, and CZ211063) from suspected sick chickens vaccinated with IBV live attenuated vaccines (H120, 4/91, or QXL87). Phylogenetic analysis of the S1 gene sequence of the spike (S) revealed that the 3 isolates belonged to the QX-type (GI-19 lineage). Whole genome sequencing and recombination analysis indicated that CZ200515 and CZ210840 contained genetic material from 4/91 and Scyz3 (QX-type), possibly due to recombination between the circulating strain and the 4/91 vaccine strain, while no evidence of recombination was found in CZ211063. Pathogenicity analysis in 1-day-old specific pathogen-free (SPF) chickens demonstrated that all 3 isolates caused severe tissue damage and varying degrees of mortality. Virus cross-neutralization assay revealed decreased antigen relatedness between the isolates and the QX-type vaccine strain (QXL87). Amino acid sequence homology analysis of S1 revealed 5%-6.5% variances between the isolates and QXL87. Analysis of the S1 subunit structure revealed that mutations of amino acid residues in the hypervariable region (HVR) and the neutralizing epitope region resulted in antigenic variation in isolates by changing the antigen conformation. Our data indicate antigenicity variances between QX isolates and QXL87 vaccine strains, potentially resulting in immune evasion occurrences. Overall, these results offer crucial insights into the epidemiology and pathogenicity of QX-type IBV, facilitating improved selection and formulation of vaccines for disease management.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Poult Sci Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Poult Sci Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Reino Unido