Your browser doesn't support javascript.
loading
Corrosion image classification method based on EfficientNetV2.
Zhao, Ziheng; Bakar, Elmi Bin Abu; Razak, Norizham Bin Abdul; Akhtar, Mohammad Nishat.
Afiliación
  • Zhao Z; School of Aerospace Engineering, Kampus Kejuruteraan, Universiti Sains Malaysia, 14300, Nibong Tebal, Pulau Pinang, Malaysia.
  • Bakar EBA; School of Aerospace Engineering, Kampus Kejuruteraan, Universiti Sains Malaysia, 14300, Nibong Tebal, Pulau Pinang, Malaysia.
  • Razak NBA; School of Aerospace Engineering, Kampus Kejuruteraan, Universiti Sains Malaysia, 14300, Nibong Tebal, Pulau Pinang, Malaysia.
  • Akhtar MN; School of Aerospace Engineering, Kampus Kejuruteraan, Universiti Sains Malaysia, 14300, Nibong Tebal, Pulau Pinang, Malaysia.
Heliyon ; 10(17): e36754, 2024 Sep 15.
Article en En | MEDLINE | ID: mdl-39286174
ABSTRACT
Corrosion is one of the key factors leading to material failure, which can occur in facilities and equipment closely related to people's lives, causing structural damage and thus affecting the safety of people's lives and property. To identify corrosion more effectively across multiple facilities and equipment, this paper utilizes a corrosion binary classification dataset containing various materials to develop a CNN classification model for better detection and distinction of material corrosion, using a methodological paradigm of transfer learning and fine-tuning. The proposed model implementation initially uses data augmentation to enhance the dataset and employs different sizes of EfficientNetV2 for training, evaluated using Confusion Matrix, ROC curve, and the values of Precision, Recall, and F1-score. To further enhance the testing results, this paper focuses on the impact of using the Global Average Pooling layer versus the Global Max Pooling layer, as well as the number of fine-tuning layers. The results show that the Global Average Pooling layer performs better, and EfficientNetV2B0 with a fine-tuning rate of 20 %, and EfficientNetV2S with a fine-tuning rate of 15 %, achieve the highest testing accuracy of 0.9176, an ROC-AUC value of 0.97, and Precision, Recall, and F1-Score values exceeding 0.9. These findings can be served as a reference for other corrosion classification models which uses EfficientNetV2.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Heliyon Año: 2024 Tipo del documento: Article País de afiliación: Malasia Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Heliyon Año: 2024 Tipo del documento: Article País de afiliación: Malasia Pais de publicación: Reino Unido