Your browser doesn't support javascript.
loading
Tandem Pt/TiO2 and Fe3C catalysts for direct transformation of CO2 to light hydrocarbons under high space velocity.
Kang, Xin; Liu, Jiancong; Wang, Dongxu; Tian, Chungui; Fu, Honggang.
Afiliación
  • Kang X; Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University. Harbin 150080, China.
  • Liu J; Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University. Harbin 150080, China. Electronic address: liujiancong@hlju.edu.cn.
  • Wang D; Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University. Harbin 150080, China.
  • Tian C; Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University. Harbin 150080, China.
  • Fu H; Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University. Harbin 150080, China. Electronic address: fuhg@hlju.edu.cn.
J Colloid Interface Sci ; 678(Pt A): 1165-1175, 2024 Sep 07.
Article en En | MEDLINE | ID: mdl-39284271
ABSTRACT
CO2 hydrogenation to hydrocarbons under high space velocity is crucial for industrial applications, but traditional Fe-based catalysts often suffer from the low activity and poor stability. Herein, we report a new tandem catalyst system combining Pt/TiO2 catalysts with Fe3C catalysts for the direct conversion of CO2 into C2-C4 hydrocarbons under high space velocity. The Pt/TiO2 component promotes *CO intermediate production with an enhanced Reverse Water-Gas Shift (RWGS) reaction efficiency, providing a highly reactive species for the Fe3C catalyst to achieve Fischer-Tropsch synthesis (FTS). By maximizing the contact interface between the Pt/TiO2 and Fe-based components through a granule mixing configuration, we achieve significant enhancements in both CO2 conversion rate (24.0 %) and C2-C4 hydrocarbons selectivity (51.1 %) under the gaseous hourly space velocity (GHSV) of 100000 mL gcat-1h-1. Besides, excellent stability is achieved by the tandem catalysts with continuous catalysis for up to 80 h without significant decrease in activity. Through modulation of the reduction states of iron oxide, we effectively tune the composition of Fe-based catalyst, thereby tailoring the product distribution. Through this work, we not only offer a promising avenue for reducing CO2 for efficient CO2 utilization but also highlight the importance of catalyst design in advancing sustainable chemical synthesis.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Colloid Interface Sci Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Colloid Interface Sci Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos