Your browser doesn't support javascript.
loading
Achieving Ultra-High-Energy-Density Lithium Batteries: Elimination of Irreversible Anionic Redox through Controlled Cationic Disordering.
Wang, Minjun; Ke, Changming; Zhang, Han; Hou, Chuanyu; Chen, Juner; Liu, Shi; Wang, Jianhui.
Afiliación
  • Wang M; Institute of Zhejiang University-Quzhou, Zheda Road 99, Quzhou 324000, China.
  • Ke C; Zhejiang Key Laboratory of 3D Micro/Nano Fabrication and Characterization, School of Engineering, Westlake University, Hangzhou 310030, China.
  • Zhang H; Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, China.
  • Hou C; Department of Physics, School of Science, Westlake University, Hangzhou 310030, China.
  • Chen J; Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China.
  • Liu S; Zhejiang Key Laboratory of 3D Micro/Nano Fabrication and Characterization, School of Engineering, Westlake University, Hangzhou 310030, China.
  • Wang J; Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, China.
Nano Lett ; 2024 Sep 16.
Article en En | MEDLINE | ID: mdl-39283995
ABSTRACT
Lithium-rich layered oxides (LLOs) capable of supporting both cationic and anionic redox chemistry are promising cathode materials. Yet, their initial charge to high voltages often trigger significant oxygen evolution, resulting in substantial capacity loss and structural instability. In this study, we applied a straightforward low-potential activation (LOWPA) method alongside a relatively stable electrolyte to address this issue. This approach enables precise control over the order-to-disorder transformation of the transition metal layers in LLOs, producing an in-plane cation-disordered Li1.2Mn0.54Co0.13Ni0.13O2 that averts irreversible oxygen evolution at 4.8 V by stabilizing Mn-O2 or Mn-O3 species within the Li/Mn-disordered nanopores. Consequently, an ultrahigh reversible capacity of 322 mAh g-1 (equating to 1141 Wh kg-1), 91.5% initial Coulombic efficiency, and enhanced durability and rate capability are simultaneously achieved. As LOWPA does not alter any chemical composition of LLOs, it also offers a simple model for untangling the complex phenomena associated with oxygen-redox chemistry.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nano Lett Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nano Lett Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos