Your browser doesn't support javascript.
loading
Causal inference over stochastic networks.
Clark, Duncan A; Handcock, Mark S.
Afiliación
  • Clark DA; Department of Statistics & Data Science, University of California - Los Angeles, Los Angeles, CA, USA.
  • Handcock MS; Department of Statistics & Data Science, University of California - Los Angeles, Los Angeles, CA, USA.
J R Stat Soc Ser A Stat Soc ; 187(3): 772-795, 2024 Aug.
Article en En | MEDLINE | ID: mdl-39281781
ABSTRACT
Claiming causal inferences in network settings necessitates careful consideration of the often complex dependency between outcomes for actors. Of particular importance are treatment spillover or outcome interference effects. We consider causal inference when the actors are connected via an underlying network structure. Our key contribution is a model for causality when the underlying network is endogenous; where the ties between actors and the actor covariates are statistically dependent. We develop a joint model for the relational and covariate generating process that avoids restrictive separability and fixed network assumptions, as these rarely hold in realistic social settings. While our framework can be used with general models, we develop the highly expressive class of Exponential-family Random Network models (ERNM) of which Markov random fields and Exponential-family Random Graph models are special cases. We present potential outcome-based inference within a Bayesian framework and propose a modification to the exchange algorithm to allow for sampling from ERNM posteriors. We present results of a simulation study demonstrating the validity of the approach. Finally, we demonstrate the value of the framework in a case study of smoking in the context of adolescent friendship networks.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J R Stat Soc Ser A Stat Soc Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J R Stat Soc Ser A Stat Soc Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido