Easy analysis of bacterial whole-genome sequencing data for clinical microbiologists using open-source Galaxy platform: Characterization of ESBL-producing Enterobacterales from bloodstream infections.
J Glob Antimicrob Resist
; 39: 153-158, 2024 Sep 13.
Article
en En
| MEDLINE
| ID: mdl-39278463
ABSTRACT
OBJECTIVES:
Clinical microbiologists require easy-to-use open access tools with graphical interfaces to perform bacterial whole-genome sequencing (WGS) in routine practice. This study aimed to build a bioinformatics pipeline on the open-source Galaxy platform, facilitating comprehensive and reproducible analysis of bacterial WGS data in a few steps. We then used it to characterize our local epidemiology of ESBL-producing Enterobacterales isolated from patients with bacteremia.METHODS:
We built a bioinformatics pipeline consisting of the following sequential tools Fastp (input data trimming); FastQC (read quality control); SPAdes (genome assembly); Quast (quality control of genome assembly); Prokka (gene annotation); Staramr (ResFinder database) and ABRicate (CARD database) for antimicrobial resistance (AMR) gene screening and molecular strain typing. Paired-end short read WGS data from all ESBL-producing Enterobacterales strains isolated from patients with bacteremia over one year were analysed.RESULTS:
The Galaxy platform does not require command line tools. The bioinformatics pipeline was constructed within one hour. It only required uploading fastq files and facilitated systematization of de novo assembly of genomes, MLST typing, and AMR gene screening in one step. Among the 66 ESBL-producing strains analysed, the two most frequent ESBL genes were blaCTX-M-15 (62.1%) and blaCTX-M-27 (13.6%).CONCLUSIONS:
The open-access Galaxy platform provides a graphical interface and easy-to-use tools suitable for routine use in clinical microbiology laboratories without bioinformatics specialists. We believe that this platform will facilitate fast and low-cost analysis of bacterial WGS data, especially in resource-limited settings.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
J Glob Antimicrob Resist
Año:
2024
Tipo del documento:
Article
País de afiliación:
Francia
Pais de publicación:
Países Bajos