Is the cadaveric model valid for examining orthopaedic manual therapy techniques? A cross-sectional comparative study in vivo and in vitro.
Clin Biomech (Bristol, Avon)
; 120: 106347, 2024 Sep 13.
Article
en En
| MEDLINE
| ID: mdl-39278050
ABSTRACT
BACKGROUND:
Cadaveric models are sometimes used to test the effect of manual techniques. We have not found any studies comparing the effect of tibiotarsal joint distraction on cadaveric models versus live models for clinical use. The aim was to compare the effect on tibiotarsal joint distraction movement when applying three force magnitudes of tibiotarsal axial traction technique force between a cadaveric model and volunteers. In addition, to compare the magnitude of force applied between the cadaveric model and volunteers. Finally, to assess the reliability of applying the same magnitude of force in three magnitudes of tibiotarsal axial traction force.METHODS:
A cross-sectional comparative study was conducted. Sixty ankle joints were in open-packed position and three magnitudes of tibiotarsal axial traction technique force were applied. Tibiotarsal joint distraction movement was measured with ultrasound.FINDINGS:
No differences were found in applied force or tibiotarsal joint distraction between volunteers and cadavers in each magnitude of force (p > 0.05). The application of the technique showed moderate reliability for detecting low forces in both models. For medium and high force, it showed good reliability in the in vitro model and excellent reliability in the live model.INTERPRETATION:
The amount of distraction produced in the tibiotarsal joint was similar in volunteers and cadavers. The cadaveric model is a valid model for testing and investigating orthopaedic manual therapy techniques. The force applied was similar in the two models. Medium and high force detection showed good reliability, while low force showed moderate.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
Clin Biomech (Bristol, Avon)
Asunto de la revista:
ENGENHARIA BIOMEDICA
/
FISIOLOGIA
Año:
2024
Tipo del documento:
Article
Pais de publicación:
Reino Unido