Your browser doesn't support javascript.
loading
Clostridium carboxidivorans and Rhodosporidium toruloides as a platform for the valorization of carbon dioxide to microbial oils.
Naveira-Pazos, Cecilia; Veiga, María C; Kennes, Christian.
Afiliación
  • Naveira-Pazos C; Chemical Engineering Laboratory, Faculty of Sciences and Interdisciplinary Centre of Chemistry and Biology - Centro Interdisciplinar de Química y Biología (CICA), BIOENGIN group, University of La Coruña, E-15008-La, Coruña, Spain.
  • Veiga MC; Chemical Engineering Laboratory, Faculty of Sciences and Interdisciplinary Centre of Chemistry and Biology - Centro Interdisciplinar de Química y Biología (CICA), BIOENGIN group, University of La Coruña, E-15008-La, Coruña, Spain.
  • Kennes C; Chemical Engineering Laboratory, Faculty of Sciences and Interdisciplinary Centre of Chemistry and Biology - Centro Interdisciplinar de Química y Biología (CICA), BIOENGIN group, University of La Coruña, E-15008-La, Coruña, Spain. Electronic address: Kennes@udc.es.
Chemosphere ; 365: 143345, 2024 Sep 13.
Article en En | MEDLINE | ID: mdl-39277045
ABSTRACT
There is growing scientific interest in oleaginous yeasts producing microbial oils as precursors of biofuels and potential substitutes for fossil fuels. Due to the high cost of substrates commonly metabolized by yeasts, volatile fatty acids (VFAs) are gaining interest as alternative cheap and sustainable carbon sources, which can be obtained from solid, liquid and gas pollutants. In this research, Rhodosporidium toruloides was proven to be able to accumulate microbial oils from VFAs obtained from the fermentation of syngas by Clostridium carboxidivorans. Using CO2 and CO as carbon sources from the syngas mixture and H2 as energy source, this acetogen produced, via the Wood-Ljungdahl pathway, a mixture of acetic, butyric and caproic acids. It was first revealed that R. toruloides exhibited minimal inhibition at concentrations below 12 g/L when exposed to a mixture of VFAs, which included acetic, butyric and even hexanoic acids. The yeast was then grown on the culture medium derived from the acetogenic fermentation of syngas. Between the two yeast strains tested of the same species, R. toruloides DSM 4444 reached a total VFAs consumption of 69.1 g/L, supplied by successive additions of acids to the reactor, yielding a maximum lipid content of 29.7% w/w cell. The lipid profile obtained in this case, in terms of abundance followed the order C181 > C160 ≥ C180 > C182>others; in which the dominant compound (C181), represented approximately 50% of the total. This research opens new possibilities in the cultivation of oleaginous yeasts for the production of biofuels and bioproducts from C1 gases.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Chemosphere Año: 2024 Tipo del documento: Article País de afiliación: España Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Chemosphere Año: 2024 Tipo del documento: Article País de afiliación: España Pais de publicación: Reino Unido