Your browser doesn't support javascript.
loading
Evaluating the Performance of Joint Angle Estimation Algorithms on an Exoskeleton Mock-Up via a Modular Testing Approach.
Pollard, Ryan S; Bass, Sarah M; Schall, Mark C; Zabala, Michael E.
Afiliación
  • Pollard RS; Department of Mechanical Engineering, Auburn University, Auburn, AL 36849, USA.
  • Bass SM; Department of Mechanical Engineering, Auburn University, Auburn, AL 36849, USA.
  • Schall MC; Department of Industrial and Systems Engineering, Auburn University, Auburn, AL 36849, USA.
  • Zabala ME; Department of Mechanical Engineering, Auburn University, Auburn, AL 36849, USA.
Sensors (Basel) ; 24(17)2024 Aug 31.
Article en En | MEDLINE | ID: mdl-39275584
ABSTRACT
A common challenge for exoskeleton control is discerning operator intent to provide seamless actuation of the device with the operator. One way to accomplish this is with joint angle estimation algorithms and multiple sensors on the human-machine system. However, the question remains of what can be accomplished with just one sensor. The objective of this study was to deploy a modular testing approach to test the performance of two joint angle estimation models-a kinematic extrapolation algorithm and a Random Forest machine learning algorithm-when each was informed solely with kinematic gait data from a single potentiometer on an ankle exoskeleton mock-up. This study demonstrates (i) the feasibility of implementing a modular approach to exoskeleton mock-up evaluation to promote continuity between testing configurations and (ii) that a Random Forest algorithm yielded lower realized errors of estimated joint angles and a decreased actuation time than the kinematic model when deployed on the physical device.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Algoritmos / Dispositivo Exoesqueleto Límite: Humans Idioma: En Revista: Sensors (Basel) Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Algoritmos / Dispositivo Exoesqueleto Límite: Humans Idioma: En Revista: Sensors (Basel) Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Suiza