Your browser doesn't support javascript.
loading
Development of Highly Efficient Lamb Wave Transducers toward Dual-Surface Simultaneous Atomization.
Gai, Chenhui; Ma, Qinghe; Ning, Jia; Ding, Yizhan; Lei, Yulin; Li, Honggeng; Guo, Chunhua; Hu, Hong.
Afiliación
  • Gai C; School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen 518055, China.
  • Ma Q; School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen 518055, China.
  • Ning J; School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen 518055, China.
  • Ding Y; School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen 518055, China.
  • Lei Y; School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen 518055, China.
  • Li H; School of Advanced Engineering, Great Bay University, Dongguan 523000, China.
  • Guo C; CNNC Shenzhen Group Co., Ltd., Shenzhen 523000, China.
  • Hu H; School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen 518055, China.
Sensors (Basel) ; 24(17)2024 Aug 29.
Article en En | MEDLINE | ID: mdl-39275518
ABSTRACT
Highly efficient surface acoustic wave (SAW) transducers offer significant advantages for microfluidic atomization. Aiming at highly efficient atomization, we innovatively accomplish dual-surface simultaneous atomization by strategically positioning the liquid supply outside the IDT aperture edge. Initially, we optimize Lamb wave transducers and specifically investigate their performance based on the ratio of substrate thickness to acoustic wavelength. When this ratio h/λ is approximately 1.25, the electromechanical coupling coefficient of A0-mode Lamb waves can reach around 5.5% for 128° Y-X LiNbO3. We then study the mechanism of droplet atomization with the liquid supply positioned outside the IDT aperture edge. Experimental results demonstrate that optimized Lamb wave transducers exhibit clear dual-surface simultaneous atomization. These transducers provide equivalent amplitude acoustic wave vibrations on both surfaces, causing the liquid thin film to accumulate at the edges of the dual-surface and form a continuous mist.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Sensors (Basel) Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Sensors (Basel) Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Suiza