Your browser doesn't support javascript.
loading
Influence of Ambient Relative Humidity on the Shrinkage Strain of Engineered Geopolymer Composites Based on Orthogonal Experimental Design.
Wang, Hongyin; Zheng, Yuelong; Yu, Zhenyun.
Afiliación
  • Wang H; School of Civil Engineering, Zhengzhou University, Zhengzhou 450001, China.
  • Zheng Y; Zhengzhou Metro Group Co., Ltd., Zhengzhou 450001, China.
  • Yu Z; School of Civil Engineering, Zhengzhou University, Zhengzhou 450001, China.
Materials (Basel) ; 17(17)2024 Aug 30.
Article en En | MEDLINE | ID: mdl-39274711
ABSTRACT
With the aim to systematically analyze the ambient relative humidity on the shrinkage strain of Engineered Geopolymer Composites (EGCs), this paper studied four variables (fly ash to ground granulated blast furnace slag mass ratio, alkali content, water-binder ratio, and fiber volume content) though orthogonal experimental design and three different relative humidity values (30%, 60%, and 100% RH). The results indicated that, for EGC specimens under 30% RH and 60% RH, the decrease in slag content and increase in alkali content both resulted in greater drying shrinkage. The addition of fibers effectively reduced the shrinkage strain, while a minor impact on shrinkage was presented by the W/B ratio. The first and second key factors affecting the drying shrinkage strain were the FA/GGBS ratio and the alkali content. The optimal ratio of FA/GGBS, alkali content, and fiber volume fraction were 0/100, 4%, and 1.5%, respectively. Dring shrinkage strain was decreased with the increase in ambient relative humidity. Compared with the shrinkage strain under 30% RH, the reduction in shrinkage strain under 60% RH and 100%RH was up to 46.1% and 107.5%, respectively. At last, a relationship between shrinkage strain and curing age under 30% and 60% RH was established with a fitting degree from 0.9492 to 0.9987, while no clear relationship was presented under 100% RH. The results in this paper provide a practical method for solving the shrinkage problem of EGCs.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Materials (Basel) Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Materials (Basel) Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Suiza