Your browser doesn't support javascript.
loading
Ostwald-Ripening Induced Interfacial Protection Layer Boosts 1,000,000-Cycled Hydronium-Ion Battery.
Zhao, Zhenzhen; Zhang, Wei; Wang, Dong; Li, Lin; Liang, Qing; Li, Wenwen; Lu, Chang; Yoo, Seung Jo; Kim, Jin-Gyu; Chen, Zhongjun; Li, Yujin; Zou, Xu; Liu, Fuxi; Zhou, Xinyan; Song, Kexin; Li, Jingjuan; Zheng, Weitao.
Afiliación
  • Zhao Z; Jilin University, School of Materials Science & Engineering, CHINA.
  • Zhang W; Jilin University, College of Materials Science and Engineering, Qianjin Street No. 2699, 130012, Changchun, CHINA.
  • Wang D; Jilin University, School of Materials Science & Engineering, CHINA.
  • Li L; Jilin University, School of Materials Science & Engineering, CHINA.
  • Liang Q; Jilin University, School of Materials Science & Engineering, CHINA.
  • Li W; Jilin University, School of Materials Science & Engineering, CHINA.
  • Lu C; Gatan Inc, AMETEK Commercial Enterprise (Shanghai) Co., LTD, CHINA.
  • Yoo SJ; Korea Basic Science Institute, Center for Research Equipment, Electron Microscopy & Spectroscopy Analysis Team, KOREA, REPUBLIC OF.
  • Kim JG; Korea Basic Science Institute, Center for Research Equipment, Electron Microscopy & Spectroscopy Analysis Team, KOREA, REPUBLIC OF.
  • Chen Z; Chinese Academy of Sciences, Institute of High Energy Physics, CHINA.
  • Li Y; Jilin University, College of earth science, CHINA.
  • Zou X; Jilin University, School of Materials Science & Engineering, CHINA.
  • Liu F; Jilin University, School of Materials Science & Engineering, CHINA.
  • Zhou X; Jilin University, School of Materials Science & Engineering, CHINA.
  • Song K; Jilin University, School of Materials Science & Engineering, CHINA.
  • Li J; Jilin University, College of Materials Science & Engineering, CHINA.
  • Zheng W; Jilin University, School of Materials Science & Engineering, CHINA.
Angew Chem Int Ed Engl ; : e202414420, 2024 Sep 13.
Article en En | MEDLINE | ID: mdl-39271463
ABSTRACT
Collapsing and degradation of active materials caused by the electrode/electrolyte interface instability in aqueous batteries are one of the main obstacles that mitigate the capacity. Herein by reversing the notorious side reactions include the loss and dissolution of electrode materials as we applied Ostwald ripening (OR) in the electrochemical cycling of a copper hexacyanoferrate electrode in a hydronium-ion batteries, the dissolved Cu and Fe ions undergo a crystallization process that creates a stable interface layer of cross-linked cubes on the electrode surface. The layer exposed the low-index crystal planes (100) and (110) through OR-induced electrode particle growth, supplemented by vacancy-ordered (100) superlattices that facilitated ion migration. Our design stabilized the electrode-electrolyte interface considerably, achieving a cycle life of one million cycles with capacity retention of 91.6%, and a capacity retention of 91.7% after 3000 cycles for a full battery.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Angew Chem Int Ed Engl Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Alemania

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Angew Chem Int Ed Engl Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Alemania