Your browser doesn't support javascript.
loading
Investigation on the anti-α-glucosidase mechanism of aspergillus triazolate A from Oxalis corniculate L.
Feng, Qianqian; Yang, Wei; Ma, Xue; Peng, Zhiyun; Wang, Guangcheng.
Afiliación
  • Feng Q; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China; School of Pharmacy, Guizhou Medical University, Guiyang, China.
  • Yang W; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China; School of Pharmacy, Guizhou Medical University, Guiyang, China.
  • Ma X; Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Guizhou Medical University, Guiyang 550004, China.
  • Peng Z; Clinical Trails Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, China. Electronic address: pengzhiyun1986@163.com.
  • Wang G; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China. Electronic address: wanggch123@163.com.
Int J Biol Macromol ; 279(Pt 4): 135457, 2024 Sep 12.
Article en En | MEDLINE | ID: mdl-39270911
ABSTRACT
Diabetes mellitus characterized by abnormal glucose concentration is a metabolic disease. α-Glu inhibitors from natural sources are a good choice for searching for high-efficiency and low-toxicity hypoglycemic drugs. In this study, a naturally effective α-Glu inhibitor aspergillus triazolate A (ATA) with a peculiar structure was first found in Oxalis corniculate L., then its activity and mechanism were first elucidated through various methods. These mechanisms included enzyme kinetics, circular dichroism spectra, fluorescence spectra, synchronous fluorescence spectrum, 3D fluorescence spectrum, and molecular docking. Meanwhile, the ability to reduce postprandial blood glucose was further investigated in vivo. Research results revealed that ATA was a mixed type α-Glu inhibitor with an IC50 value of 66.87 ± 1.50 µM, which bound to the enzyme from a single site through hydrogen bonding and hydrophobic forces causing the looser secondary structure of α-Glu. It was also found that the binding site of α-Glu was closer to the Trp residue, and the endogenous fluorescence of α-Glu was quenched in a static quenching form. Moreover, the sucrose loading test in vivo revealed that the ATA of 20 mg/kg could effectively reduce the postprandial blood glucose level. Hence, ATA could be used as lead compound to develop novel α-Glu inhibitors.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Int J Biol Macromol Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Países Bajos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Int J Biol Macromol Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Países Bajos