Bioupcycling Methane and CO2 for Succinate Production by an Engineered Type I Methanotrophic Bacterium.
J Agric Food Chem
; 72(44): 24237-24245, 2024 Nov 06.
Article
en En
| MEDLINE
| ID: mdl-39269285
ABSTRACT
Methane, a byproduct of agricultural activities, has shown potential as a nonedible substrate for biomanufacturing. The production of succinate by a methanotrophic bacterium utilizing methane presents an innovative route for the sustainable synthesis of chemicals. In this study, Methylotuvimicrobium buryatense 5GB1S was genetically modified through the reconstruction of an artificial serine cycle to enable the bioconversion of both methane and CO2 into succinate. The 13C labeling analysis confirmed the CO2 fixing in M. buryatense 5GB1S, leading to a 46% improvement in carbon conversion efficiency and a 107% increase in succinate production compared to the wild-type strain. The transcriptome data on carbon metabolisms was assessed to guide future optimizations for strengthening the overall carbon flux from methane to succinate. Finally, the maximum succinate titer of 299.36 mg/L was achieved under oxygen-limited conditions in 3 L bioreactors, which resulted in the volumetric productivity of 199.60 mg/L/day, representing a 23-fold enhancement compared to the wild-type strain. This study offers a new strategy for upcycling greenhouse gases into succinate in a sustainable manner through methanotrophic-based biomanufacturing.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Dióxido de Carbono
/
Ácido Succínico
/
Ingeniería Metabólica
/
Metano
Idioma:
En
Revista:
J Agric Food Chem
Año:
2024
Tipo del documento:
Article
País de afiliación:
China
Pais de publicación:
Estados Unidos