Your browser doesn't support javascript.
loading
Enhanced visible light responsive piezoelectric photocatalysis based on Bi2S3 coated BaTiO3 nanorods heterostructures.
Liu, Yu; Zheng, Jian; Zhu, Zhijia; Huang, Zhangmi; Hu, Chunyan; Liu, Baojiang.
Afiliación
  • Liu Y; Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering, Innovation Center for Textile Science and Technology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China.
  • Zheng J; Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering, Innovation Center for Textile Science and Technology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China.
  • Zhu Z; Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering, Innovation Center for Textile Science and Technology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China.
  • Huang Z; Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering, Innovation Center for Textile Science and Technology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China.
  • Hu C; Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering, Innovation Center for Textile Science and Technology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China. Electronic address: chunyanhu@dhu.edu.cn.
  • Liu B; Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering, Innovation Center for Textile Science and Technology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China. Electronic address: bjliu@dhu.edu.cn.
J Colloid Interface Sci ; 678(Pt B): 657-670, 2024 Sep 11.
Article en En | MEDLINE | ID: mdl-39265337
ABSTRACT
Although the presence of the built-in electric field will solve the problem of carrier complexation in photocatalytic systems to some extent. However, free carriers will quickly shield the stabilized electric field and lose its effect. Therefore, how to introduce the dynamic piezoelectric field into the photocatalytic system has become an imminent problem. Herein, we developed an overcoated, visible light responsive, piezoelectric-assisted photocatalytic system by depositing Bi2S3 photocatalysts with a narrow-band system onto the surface of highly piezo-responsive BaTiO3 nanorods (BTO NRs). The heterojunction structure, bound by Bi-O chemical bonding, enhances carrier transport efficiency under the influence of the piezoelectric field. In the degradation experiments, the first-order rate constant for the degradation of chlortetracycline hydrochloride (CTC) in the BTO NRs/Bi2S3 system with the optimal complex ratio was 0.0276 min-1, which was 3.1 and 7.8 times higher than that of BTO NRs and Bi2S3, respectively. Additionally, we deduced the degradation pathways of CTC through a combination of Density functional theory (DFT) calculations and Liquid Chromatograph Mass Spectrometer (LC-MS), evaluating the toxicity of the intermediates. This complex system, featuring a highly photo-responsive semiconductor as a photo-acceptor deposited on a piezoelectric semiconductor surface providing a dynamic built-in electric field, enhances carrier separation efficiency under optimal light energy utilization conditions. These findings present novel and effective strategies for addressing two primary challenges in photocatalytic systems low spectral utilization and significant photogenerated carrier complexation.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Colloid Interface Sci Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Colloid Interface Sci Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos