Your browser doesn't support javascript.
loading
Nanomechanical mapping of PLA hydroxyapatite composite scaffolds links surface homogeneity to stem cell differentiation.
Sitthisang, Sonthikan; Hou, Xunan; Treetong, Alongkot; Xu, Xin; Liu, Weilin; He, Chaobin; Sae-Ueng, Udom; Yodmuang, Supansa.
Afiliación
  • Sitthisang S; Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.
  • Hou X; Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575, Singapore.
  • Treetong A; National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand.
  • Xu X; Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575, Singapore.
  • Liu W; Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575, Singapore.
  • He C; Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575, Singapore. msehc@nus.edu.sg.
  • Sae-Ueng U; Agency for Science, Technology, and Research (A*STAR), Institute of Materials Research and Engineering, 2 Fusionopolis Way, Innovis, Singapore, 138634, Singapore. msehc@nus.edu.sg.
  • Yodmuang S; National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand. udom.sae@biotec.or.th.
Sci Rep ; 14(1): 21097, 2024 09 10.
Article en En | MEDLINE | ID: mdl-39256445
ABSTRACT
Polymer composite scaffolds hold promise in bone tissue engineering due to their biocompatibility, mechanical properties, and reproducibility. Among these materials, polylactic acid (PLA), a biodegradable plastics has gained attention for its processability characteristics. However, a deeper understanding of how PLA scaffold surface properties influence cell behavior is enssential for advancing its applications. In this study, 3D-printed PLA scaffolds containing hydroxyapatite (HA) were analyzed using atomic force microscopy and nanomechanical mapping. The addition of HA significantly increased key surface properties compared to unmodified PLA scaffols. Notably, the HA-modified scaffold demonstrated Gaussian distribution of stiffness and adhesive forces, in contrast to the bimodal properties observed in the unmodified PLA scaffolds. Human adipose-derived mesenchymal stem cell (hADMSC) seeded on the 3D-printed PLA scaffolds blended with 10% HA (P10) exhibited strong attachment. After four weeks, osteogenic differentiation of hADMSCs was detected, with calcium deposition reaching 6.76% ± 0.12. These results suggest that specific ranges of stiffness and adhesive forces of the composite scaffold can support cell attachement, and mineralization. The study highlights that tailoring suface properties of composite scaffolds is crucial for modulating cellular interactions, thus advancing the development of effective bone replacement materials.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Osteogénesis / Poliésteres / Propiedades de Superficie / Diferenciación Celular / Durapatita / Ingeniería de Tejidos / Andamios del Tejido / Células Madre Mesenquimatosas Límite: Humans Idioma: En Revista: Sci Rep Año: 2024 Tipo del documento: Article País de afiliación: Tailandia Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Osteogénesis / Poliésteres / Propiedades de Superficie / Diferenciación Celular / Durapatita / Ingeniería de Tejidos / Andamios del Tejido / Células Madre Mesenquimatosas Límite: Humans Idioma: En Revista: Sci Rep Año: 2024 Tipo del documento: Article País de afiliación: Tailandia Pais de publicación: Reino Unido