Your browser doesn't support javascript.
loading
Inflammation-free electrochemical in vivo sensing of dopamine with atomic-level engineered antioxidative single-atom catalyst.
Gao, Xiaolong; Wei, Huan; Ma, Wenjie; Wu, Wenjie; Ji, Wenliang; Mao, Junjie; Yu, Ping; Mao, Lanqun.
Afiliación
  • Gao X; College of Chemistry, Beijing Normal University, 100875, Beijing, China.
  • Wei H; Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences (CAS), 100190, Beijing, China.
  • Ma W; College of Chemistry, Beijing Normal University, 100875, Beijing, China.
  • Wu W; Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences (CAS), 100190, Beijing, China. mawenjie@iccas.ac.cn.
  • Ji W; University of Chinese Academy of Sciences, 100049, Beijing, China. mawenjie@iccas.ac.cn.
  • Mao J; Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences (CAS), 100190, Beijing, China.
  • Yu P; University of Chinese Academy of Sciences, 100049, Beijing, China.
  • Mao L; College of Chemistry, Beijing Normal University, 100875, Beijing, China.
Nat Commun ; 15(1): 7915, 2024 Sep 10.
Article en En | MEDLINE | ID: mdl-39256377
ABSTRACT
Electrochemical methods with tissue-implantable microelectrodes provide an excellent platform for real-time monitoring the neurochemical dynamics in vivo due to their superior spatiotemporal resolution and high selectivity and sensitivity. Nevertheless, electrode implantation inevitably damages the brain tissue, upregulates reactive oxygen species level, and triggers neuroinflammatory response, resulting in unreliable quantification of neurochemical events. Herein, we report a multifunctional sensing platform for inflammation-free in vivo analysis with atomic-level engineered Fe single-atom catalyst that functions as both single-atom nanozyme with antioxidative activity and electrode material for dopamine oxidation. Through high-temperature pyrolysis and catalytic performance screening, we fabricate a series of Fe single-atom nanozymes with different coordination configurations and find that the Fe single-atom nanozyme with FeN4 exhibits the highest activity toward mimicking catalase and superoxide dismutase as well as eliminating hydroxyl radical, while also featuring high electrode reactivity toward dopamine oxidation. These dual functions endow the single-atom nanozyme-based sensor with anti-inflammatory capabilities, enabling accurate dopamine sensing in living male rat brain. This study provides an avenue for designing inflammation-free electrochemical sensing platforms with atomic-precision engineered single-atom catalysts.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Oxidación-Reducción / Dopamina / Técnicas Electroquímicas / Antioxidantes Límite: Animals Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Oxidación-Reducción / Dopamina / Técnicas Electroquímicas / Antioxidantes Límite: Animals Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Reino Unido