Spatiotemporal resonance in mouse primary visual cortex.
Curr Biol
; 34(18): 4184-4196.e7, 2024 Sep 23.
Article
en En
| MEDLINE
| ID: mdl-39255789
ABSTRACT
Human primary visual cortex (V1) responds more strongly, or resonates, when exposed to â¼10, â¼15-20, and â¼40-50 Hz rhythmic flickering light. Full-field flicker also evokes the perception of hallucinatory geometric patterns, which mathematical models explain as standing-wave formations emerging from periodic forcing at resonant frequencies of the simulated neural network. However, empirical evidence for such flicker-induced standing waves in the visual cortex was missing. We recorded cortical responses to flicker in awake mice using high-spatial-resolution widefield imaging in combination with high-temporal-resolution glutamate-sensing fluorescent reporter (iGluSnFR). The temporal frequency tuning curves in the mouse V1 were similar to those observed in humans, showing a banded structure with multiple resonance peaks (8, 15, and 33 Hz). Spatially, all flicker frequencies evoked responses in V1 corresponding to retinotopic stimulus location, but some evoked additional peaks. These flicker-induced cortical patterns displayed standing-wave characteristics and matched linear wave equation solutions in an area restricted to the visual cortex. Taken together, the interaction of periodic traveling waves with cortical area boundaries leads to spatiotemporal activity patterns that may affect perception.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Corteza Visual Primaria
Límite:
Animals
Idioma:
En
Revista:
Curr Biol
Asunto de la revista:
BIOLOGIA
Año:
2024
Tipo del documento:
Article
Pais de publicación:
Reino Unido