Your browser doesn't support javascript.
loading
Safety and efficiency of a fully automatic workflow for auto-segmentation in radiotherapy using three commercially available deep learning-based applications.
Cavus, Hasan; Bulens, Philippe; Tournel, Koen; Orlandini, Marc; Jankelevitch, Alexandra; Crijns, Wouter; Reniers, Brigitte.
Afiliación
  • Cavus H; Department of Radiation Oncology, Jessa Hospital, 3500 Hasselt, Belgium.
  • Bulens P; Limburg Oncology Center, 3500 Hasselt, Belgium.
  • Tournel K; Faculty of Engineering Technology, Hasselt University, B-3590 Diepenbeek, Belgium.
  • Orlandini M; Department of Radiation Oncology, Jessa Hospital, 3500 Hasselt, Belgium.
  • Jankelevitch A; Limburg Oncology Center, 3500 Hasselt, Belgium.
  • Crijns W; Department of Radiation Oncology, Jessa Hospital, 3500 Hasselt, Belgium.
  • Reniers B; Limburg Oncology Center, 3500 Hasselt, Belgium.
Phys Imaging Radiat Oncol ; 31: 100627, 2024 Jul.
Article en En | MEDLINE | ID: mdl-39253729
ABSTRACT
Advancements in radiotherapy auto-segmentation necessitate reliable and efficient workflows. Therefore, a standardized fully automatic workflow was developed for three commercially available deep learning-based auto-segmentation applications and compared to a manual workflow for safety and efficiency. The workflow underwent safety evaluation with failure mode and effects analysis. Notably, eight failure modes were reduced, including seven with severity factors ≥7, indicating the effect on patients, and two with Risk Priority Number value >125, which assesses relative risk level. Efficiency, measured by mouse clicks, showed zero clicks with the automatic workflow. This automation illustrated improvement in both safety and efficiency of workflow.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Phys Imaging Radiat Oncol Año: 2024 Tipo del documento: Article País de afiliación: Bélgica Pais de publicación: Países Bajos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Phys Imaging Radiat Oncol Año: 2024 Tipo del documento: Article País de afiliación: Bélgica Pais de publicación: Países Bajos