Your browser doesn't support javascript.
loading
Adapting differential molecular representation with hierarchical prompts for multi-label property prediction.
Kang, Linjia; Zhou, Songhua; Fang, Shuyan; Liu, Shichao.
Afiliación
  • Kang L; College of Informatics, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
  • Zhou S; College of Informatics, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
  • Fang S; College of Informatics, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
  • Liu S; College of Informatics, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
Brief Bioinform ; 25(5)2024 Jul 25.
Article en En | MEDLINE | ID: mdl-39252594
ABSTRACT
Accurate prediction of molecular properties is crucial in drug discovery. Traditional methods often overlook that real-world molecules typically exhibit multiple property labels with complex correlations. To this end, we propose a novel framework, HiPM, which stands for Hierarchical Prompted Molecular representation learning framework. HiPM leverages task-aware prompts to enhance the differential expression of tasks in molecular representations and mitigate negative transfer caused by conflicts in individual task information. Our framework comprises two core components the Molecular Representation Encoder (MRE) and the Task-Aware Prompter (TAP). MRE employs a hierarchical message-passing network architecture to capture molecular features at both the atom and motif levels. Meanwhile, TAP utilizes agglomerative hierarchical clustering algorithm to construct a prompt tree that reflects task affinity and distinctiveness, enabling the model to consider multi-granular correlation information among tasks, thereby effectively handling the complexity of multi-label property prediction. Extensive experiments demonstrate that HiPM achieves state-of-the-art performance across various multi-label datasets, offering a novel perspective on multi-label molecular representation learning.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Algoritmos Idioma: En Revista: Brief Bioinform Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Algoritmos Idioma: En Revista: Brief Bioinform Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Reino Unido