Your browser doesn't support javascript.
loading
Eco-friendly synthesis of silver nanoparticles against mosquitoes: Pesticidal impact and indispensable biosafety assessment.
Wang, Chunzhi; Jiang, Yang; He, Keyu; Wang, Yán.
Afiliación
  • Wang C; Department of Urology, Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University; School of Public Health, Anhui Medical University, Hefei, Anhui 230601, China.
  • Jiang Y; Department of Urology, Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University; School of Public Health, Anhui Medical University, Hefei, Anhui 230601, China.
  • He K; Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China; Blood Transfusion Department, Clinical Laboratory, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, China.
  • Wang Y; Department of Urology, Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University; School of Public Health, Anhui Medical University, Hefei, Anhui 230601, China; Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Publi
Sci Total Environ ; 953: 176006, 2024 Sep 04.
Article en En | MEDLINE | ID: mdl-39241875
ABSTRACT
The emergence of nanotechnology has opened new avenues for enhancing pest control strategies through the development of nanopesticides. Green-fabricated nanoparticles, while promising due to their eco-friendly synthesis methods, may still pose risks to biodiversity and ecosystem stability. The potential toxic effects of nanomaterials on ecosystems and human health raise important questions about their real-world application. Understanding the dose-response relationships of nanopesticides, both in terms of pest control efficacy and non-target organism safety, is crucial for ensuring their sustainable use in agricultural settings. This review delves into the complexities of silver nanopesticides, exploring their interactions with arthropod species, modes of action, and underlying mechanisms of toxicity. It discusses critical issues concerning the emergence of silver nanopesticides, spanning their mosquitocidal efficacy to environmental impact and safety considerations. While nano­silver has shown promise in targeting insect pests, there is a lack of systematic research comparing its effects on different arthropod subclasses. Moreover, factors influencing nanotoxicity, such as nanoparticle size, charge, and surface chemistry, require further investigation to optimize the design of eco-safe nanoparticles for pest control. By elucidating the mechanisms by which nanoparticles interact with pests and non-target organisms, we can enhance the specificity and effectiveness of nanopesticides while minimizing unintended ecological consequences.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Sci Total Environ Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Países Bajos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Sci Total Environ Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Países Bajos