Regulating the Electrochemical Nitrate Reduction Performance with Controllable Distribution of Unconventional Phase Copper on Alloy Nanostructures.
Adv Mater
; : e2407889, 2024 Sep 06.
Article
en En
| MEDLINE
| ID: mdl-39240011
ABSTRACT
Electrochemical nitrate reduction reaction (NO3RR) is emerging as a promising strategy for nitrate removal and ammonia (NH3) production using renewable electricity. Although great progresses have been achieved, the crystal phase effect of electrocatalysts on NO3RR remains rarely explored. Here, the epitaxial growth of unconventional 2H Cu on hexagonal close-packed (hcp) IrNi template, resulting in the formation of three IrNiCu@Cu nanostructures, is reported. IrNiCu@Cu-20 shows superior catalytic performance, with NH3 Faradaic efficiency (FE) of 86% at -0.1 (vs reversible hydrogen electrode [RHE]) and NH3 yield rate of 687.3 mmol gCu -1 h-1, far better than common face-centered cubic Cu. In sharp contrast, IrNiCu@Cu-30 and IrNiCu@Cu-50 covered by hcp Cu shell display high selectivity toward nitrite (NO2 -), with NO2 - FE above 60% at 0.1 (vs RHE). Theoretical calculations have demonstrated that the IrNiCu@Cu-20 has the optimal electronic structures for NO3RR due to the highest d-band center and strongest reaction trend with the lowest energy barriers. The high electroactivity of IrNiCu@Cu-20 originates from the abundant low coordination of Cu sites on the surface, which guarantees the fast electron transfer to accelerate the intermediate conversions. This work provides a feasible tactic to regulate the product distribution of NO3RR by crystal phase engineering of electrocatalysts.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
Adv Mater
Asunto de la revista:
BIOFISICA
/
QUIMICA
Año:
2024
Tipo del documento:
Article
País de afiliación:
China
Pais de publicación:
Alemania