Your browser doesn't support javascript.
loading
Glucocorticoid treatment increases cholesterol availability during critical illness: effect on adrenal and muscle function.
De Bruyn, Lauren; Téblick, Arno; Van Oudenhove, Tim; Vander Perre, Sarah; Derese, Inge; Pauwels, Lies; Derde, Sarah; De Vlieger, Greet; Van den Berghe, Greet; Langouche, Lies.
Afiliación
  • De Bruyn L; Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1 Box 503, 3000, Leuven, Belgium.
  • Téblick A; Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1 Box 503, 3000, Leuven, Belgium.
  • Van Oudenhove T; Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1 Box 503, 3000, Leuven, Belgium.
  • Vander Perre S; Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1 Box 503, 3000, Leuven, Belgium.
  • Derese I; Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1 Box 503, 3000, Leuven, Belgium.
  • Pauwels L; Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1 Box 503, 3000, Leuven, Belgium.
  • Derde S; Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1 Box 503, 3000, Leuven, Belgium.
  • De Vlieger G; Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1 Box 503, 3000, Leuven, Belgium.
  • Van den Berghe G; Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1 Box 503, 3000, Leuven, Belgium.
  • Langouche L; Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1 Box 503, 3000, Leuven, Belgium. lies.langouche@kuleuven.be.
Crit Care ; 28(1): 295, 2024 Sep 05.
Article en En | MEDLINE | ID: mdl-39238038
ABSTRACT

BACKGROUND:

Hypocholesterolemia hallmarks critical illness though the underlying pathophysiology is incompletely understood. As low circulating cholesterol levels could partly be due to an increased conversion to cortisol/corticosterone, we hypothesized that glucocorticoid treatment, via reduced de novo adrenal cortisol/corticosterone synthesis, might improve cholesterol availability and as such affect adrenal gland and skeletal muscle function.

METHODS:

In a matched set of prolonged critically ill patients (n = 324) included in the EPaNIC RCT, a secondary analysis was performed to assess the association between glucocorticoid treatment and plasma cholesterol from ICU admission to day five. Next, in a mouse model of cecal ligation and puncture-induced sepsis, septic mice were randomized to receive either hydrocortisone (1.2 mg/day) (n = 17) or placebo (n = 15) for 5 days, as compared with healthy mice (n = 18). Plasma corticosterone, cholesterol, and adrenocortical and myofiber cholesterol were quantified. Adrenal structure and steroidogenic capacity were evaluated. Muscle force and markers of atrophy, fibrosis and regeneration were quantified. In a consecutive mouse study with identical design (n = 24), whole body composition was assessed by EchoMRI to investigate impact on lean mass, fat mass, total and free water.

RESULTS:

In human patients, glucocorticoid treatment was associated with higher plasma HDL- and LDL-cholesterol from respectively ICU day two and day three, up to day five (P < 0.05). Plasma corticosterone was no longer elevated in hydrocortisone-treated septic mice compared to placebo, whereas the sepsis-induced reduction in plasma HDL- and LDL-cholesterol and in adrenocortical cholesterol was attenuated (P < 0.05), but without improving the adrenocortical ACTH-induced CORT response and with increased adrenocortical inflammation and apoptosis (P < 0.05). Total body mass was further decreased in hydrocortisone-treated septic mice (P < 0.01) compared to placebo, with no additional effect on muscle mass, force or myofiber size. The sepsis-induced rise in markers of muscle atrophy and fibrosis was unaffected by hydrocortisone treatment, whereas markers of muscle regeneration were suppressed compared to placebo (P < 0.05). An increased loss of lean body mass and total and free water was observed in hydrocortisone-treated septic mice compared to placebo (P < 0.05).

CONCLUSIONS:

Glucocorticoid treatment partially attenuated critical illness-induced hypocholesterolemia, but at a cost of impaired adrenal function, suppressed muscle regeneration and exacerbated loss of body mass.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Colesterol / Enfermedad Crítica / Glándulas Suprarrenales / Músculo Esquelético / Glucocorticoides Límite: Aged / Animals / Female / Humans / Male / Middle aged Idioma: En Revista: Crit Care Año: 2024 Tipo del documento: Article País de afiliación: Bélgica Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Colesterol / Enfermedad Crítica / Glándulas Suprarrenales / Músculo Esquelético / Glucocorticoides Límite: Aged / Animals / Female / Humans / Male / Middle aged Idioma: En Revista: Crit Care Año: 2024 Tipo del documento: Article País de afiliación: Bélgica Pais de publicación: Reino Unido