Intelligent tool wear prediction based on deep learning PSD-CVT model.
Sci Rep
; 14(1): 20754, 2024 Sep 05.
Article
en En
| MEDLINE
| ID: mdl-39237695
ABSTRACT
To ensure the reliability of machining quality, it is crucial to predict tool wear accurately. In this paper, a novel deep learning-based model is proposed, which synthesizes the advantages of power spectral density (PSD), convolutional neural networks (CNN), and vision transformer model (ViT), namely PSD-CVT. PSD maps can provide a comprehensive understanding of the spectral characteristics of the signals. It makes the spectral characteristics more obvious and makes it easy to analyze and compare different signals. CNN focuses on local feature extraction, which can capture local information such as the texture, edge, and shape of the image, while the attention mechanism in ViT can effectively capture the global structure and long-range dependencies present in the image. Two fully connected layers with a ReLU function are used to obtain the predicted tool wear values. The experimental results on the PHM 2010 dataset demonstrate that the proposed model has higher prediction accuracy than the CNN model or ViT model alone, as well as outperforms several existing methods in accurately predicting tool wear. The proposed prediction method can also be applied to predict tool wear in other machining fields.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
Sci Rep
Año:
2024
Tipo del documento:
Article
País de afiliación:
China
Pais de publicación:
Reino Unido