Your browser doesn't support javascript.
loading
Selenium and concomitant anions removal in a fixed bed bioreactor to satisfy drinking water regulations and subsequent stability check of selenium-laden biosludge.
Shakya, Arvind Kumar; Sonkeshariya, Himanshu; Rajashekhar, Gajjela; Ghosh, Pranab Kumar.
Afiliación
  • Shakya AK; Department of Earth and Environmental Sciences, IISER Mohali, Mohali, India; Department of Civil Engineering, IIT Guwahati, Guwahati, India. Electronic address: arvindshakya@iisermohali.ac.in.
  • Sonkeshariya H; Department of Civil Engineering, IIT Guwahati, Guwahati, India.
  • Rajashekhar G; Department of Civil Engineering, IIT Guwahati, Guwahati, India.
  • Ghosh PK; Department of Civil Engineering, IIT Guwahati, Guwahati, India.
Environ Res ; 262(Pt 2): 119895, 2024 Sep 03.
Article en En | MEDLINE | ID: mdl-39237019
ABSTRACT
This is the first successful report on selenium bio-attenuation to satisfy drinking water regulations as per Indian Standards (10 µg/L) in the presence of concomitant nitrate and sulfate from water sources utilizing a fixed bed bioreactor. The bioreactor was immunized with blended microbial culture and worked in downflow mode under anoxic conditions at 30 ± 2 °C for around 190 days under varying influent selenate (100-500 µg/L as selenium), nitrate (50 mg/L), sulfate concentrations (as per selenium removal) and necessary dose of acetic acid (as COD, a carbon source) in synthetic groundwater, operated at an empty bed contact time (EBCT) of 45-120 min. After supplying an adequate dosage of sulfate and alteration of EBCT, selenium was found to comply with drinking water regulations and nitrate was completely removed. X-ray diffraction and transmission electron microscopy analyses depicted nanocrystalline selenium sulfides (SeS and SeS2) formation as the possible mechanisms of selenium removal. Extended toxicity characteristic leaching procedure (TCLP) extractions confirmed a maximum selenium leaching of 52 and 282 µg/L during anoxic and oxic extractions, respectively. Long-term column leaching (>3-month equilibration) under aerobic conditions at pH 7 confirmed the produced precipitate to be essentially stable (∼0.14% Se leaching). This work exhibits the synchronous bioremoval of selenium and its co-anions from contaminated water complying with drinking water standards, and leaving a stable and non-hazardous selenium-laden biosludge.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Environ Res Año: 2024 Tipo del documento: Article Pais de publicación: Países Bajos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Environ Res Año: 2024 Tipo del documento: Article Pais de publicación: Países Bajos